A Dirichlet series for Hermitian modular forms of degree 2
We prove the recursive integral formula of class one -Whittaker functions on SL conjectured and verified in case of by Stade.
Let be a positive integer divisible by 4, a prime, an elliptic cuspidal eigenform (ordinary at ) of weight , level 4 and non-trivial character. In this paper we provide evidence for the Bloch-Kato conjecture for the motives and , where is the motif attached to . More precisely, we prove that under certain conditions the -adic valuation of the algebraic part of the symmetric square -function of evaluated at provides a lower bound for the -adic valuation of the order of the Pontryagin...
Let be two different prime numbers, let be a local non archimedean field of residual characteristic , and let be an algebraic closure of the field of -adic numbers , the ring of integers of , the residual field of . We proved the existence and the unicity of a Langlands local correspondence over for all , compatible with the reduction modulo in [V5], without using and factors of pairs. We conjecture that the Langlands local correspondence over respects congruences modulo between...
Mixed automorphic forms generalize elliptic modular forms, and they occur naturally as holomorphic forms of the highest degree on families of abelian varieties parametrized by a Riemann surface. We construct generalized Eisenstein series and Poincaré series, and prove that they are mixed automorphic forms.