Invariants of translation surfaces

Pascal Hubert[1]; Thomas A. Schmidt[2]

  • [1] Institut de Mathématiques de Luminy, Case 907, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France)
  • [2] Oregon State University, Department of Mathematics, Kidder Hall 368, Corvallis OR 97331-4605 (USA)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 2, page 461-495
  • ISSN: 0373-0956

Abstract

top
We definite invariants of translation surfaces which refine Veech groups. These aid in exact determination of Veech groups. We give examples where two surfaces of isomorphic Veech group cannot even share a common tree of balanced affine coverings. We also show that there exist translation surfaces of isomorphic Veech groups which cannot affinely cover any common surface. We also extend a result of Gutkin and Judge and thereby give the first examples of noncompact Fuchsian groups which cannot appear as Veech groups. We give an infinite family of these.

How to cite

top

Hubert, Pascal, and Schmidt, Thomas A.. "Invariants of translation surfaces." Annales de l’institut Fourier 51.2 (2001): 461-495. <http://eudml.org/doc/115922>.

@article{Hubert2001,
abstract = {We definite invariants of translation surfaces which refine Veech groups. These aid in exact determination of Veech groups. We give examples where two surfaces of isomorphic Veech group cannot even share a common tree of balanced affine coverings. We also show that there exist translation surfaces of isomorphic Veech groups which cannot affinely cover any common surface. We also extend a result of Gutkin and Judge and thereby give the first examples of noncompact Fuchsian groups which cannot appear as Veech groups. We give an infinite family of these.},
affiliation = {Institut de Mathématiques de Luminy, Case 907, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Oregon State University, Department of Mathematics, Kidder Hall 368, Corvallis OR 97331-4605 (USA)},
author = {Hubert, Pascal, Schmidt, Thomas A.},
journal = {Annales de l’institut Fourier},
keywords = {flat surfaces; Teichmüller disks; billiards; Hecke triangle groups; Veech groups; tree of balanced; affine coverings},
language = {eng},
number = {2},
pages = {461-495},
publisher = {Association des Annales de l'Institut Fourier},
title = {Invariants of translation surfaces},
url = {http://eudml.org/doc/115922},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Hubert, Pascal
AU - Schmidt, Thomas A.
TI - Invariants of translation surfaces
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 2
SP - 461
EP - 495
AB - We definite invariants of translation surfaces which refine Veech groups. These aid in exact determination of Veech groups. We give examples where two surfaces of isomorphic Veech group cannot even share a common tree of balanced affine coverings. We also show that there exist translation surfaces of isomorphic Veech groups which cannot affinely cover any common surface. We also extend a result of Gutkin and Judge and thereby give the first examples of noncompact Fuchsian groups which cannot appear as Veech groups. We give an infinite family of these.
LA - eng
KW - flat surfaces; Teichmüller disks; billiards; Hecke triangle groups; Veech groups; tree of balanced; affine coverings
UR - http://eudml.org/doc/115922
ER -

References

top
  1. P. Arnoux, Ergodicité générique des billards polygonaux (d'après Kerckhoff, Masur, Smillie), Séminaire Bourbaki 1987/88 No 696-5 (1988), 203-221 Zbl0671.58023
  2. P. Arnoux, A. Fathi, Un exemple de difféomorphisme pseudo-Anosov, C. R. Acad. Sci. Paris, sér. I Math. 312 (1991), 241-244 Zbl0722.57015MR1089706
  3. P. Arnoux, P. Hubert, Fractions continues sur les surfaces de Veech Zbl1029.11035MR1785277
  4. A. Beardon, The geometry of discrete groups, 91 (1984), Springer-Verlag, Berlin Zbl0528.30001MR1393195
  5. M. Boshernitzan, C. Carroll, An extension of Lagrange's theorem to interval exchange tranformations over quadratic fields, J. Anal. Math. 72 (1997), 21-44 Zbl0931.28013MR1482988
  6. C. Birkenhake, H. Lange, Complex abelian varieties, vol. 302 (1992), Springer-Verlag, Berlin Zbl0779.14012MR1217487
  7. J.H. Conway, Understanding groups like Γ 0 ( N ) , Groups, difference sets, and the Monster (Columbus, OH, 1993) 4 (1996), 327-343, de Gruyter, Berlin Zbl0860.11019
  8. C.J. Earle, F.P. Gardiner, Teichmüller disks and Veech’s -structures, Extremal Riemann surfaces 201 (1997), 165-189, Amer. Math. Soc., Providence, RI Zbl0868.32027
  9. A. Eskin, H. Masur, Pointwise asymptotic formulas on flat surfaces, (1999) Zbl1096.37501
  10. A. Fathi, Some compact invariant sets for hyperbolic linear automorphisms of torii, Ergodic Theory Dynam. Systems 8 (1988), 191-204 Zbl0658.58028MR951268
  11. E. Gutkin, Branched coverings and closed geodesics in flat surfaces, with applications to billiards, Dynamical Systems from Crystal to Chaos (2000), 259-273, World Scientific, Singapore Zbl1196.37067
  12. E. Gutkin, C. Judge, The geometry and arithmetic of translation surfaces with applications to polygonal billiards, Math. Res. Lett. 3 (1996), 391-403 Zbl0865.30060MR1397686
  13. E. Gutkin, C. Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000), 191-213 Zbl0965.30019MR1760625
  14. W. Harvey, On certain families of compact Riemann surfaces, Mapping class groups and moduli spaces of Riemann surfaces 150 (1993), 137-148, Amer. Math. Soc., Providence, RI Zbl0793.32008
  15. W. Harvey, Drawings, triangle groups and algebraic curves, (1997) 
  16. H. Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe, Math. Z. 92 (1966), 269-280 Zbl0143.30601MR228437
  17. P. Hubert, T. Schmidt, Veech groups and polygonal coverings, J. Physics and Geom. 35 (2000), 75-91 Zbl0977.30027MR1767943
  18. S. Katok, Fuchsian groups, (1992), Univ. Chicago Press, Chicago Zbl0753.30001MR1177168
  19. A. Katok, A. Zemlyakov, Topological transitivity of billiard flows in polygons, Math. Notes 18 (1975), 760-764 Zbl0323.58012
  20. R. Kenyon, J. Smillie, Billiards in rational-angled triangles, Commentarii Math. Helvetici 75 (2000), 65-108 Zbl0967.37019MR1760496
  21. S.P. Kerkhoff, H. Masur, J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. 124 (1986), 293-311 Zbl0637.58010MR855297
  22. I. Kra, The Carathéodory metric on abelian Teichmüller disks, J. Anal. Math. 40 (1981), 129-143 Zbl0487.32017MR659787
  23. A. Leutbecher, Über die Heckeschen Gruppen G ( λ ) , II, Math. Ann. 211 (1974), 63-86 Zbl0292.10020MR347736
  24. C. Maclachlan, G. Rosenberger, Commensurability classes of two generator Fuchsian groups, Discrete groups and geometry 173 (1992), 171-189, Cambridge University Press, Cambridge Zbl0849.30033
  25. G.A. Margulis, Discrete subgroups of semisimple Lie groups, (1991), Springer-Verlag, New York Zbl0732.22008MR1090825
  26. H. Masur, Closed geodesics for quadratic differentials with applications to billiards, Duke J. Math. 53 (1986), 307-314 Zbl0616.30044MR850537
  27. H. Masur, S. Tabachnikov, Rational billiards and flat structures Zbl1057.37034MR1928530
  28. B. Schindler, Period matrices of hyperelliptic curves, Manuscripta Math. 78 (1993), 369-380 Zbl0801.14008MR1208647
  29. S. Tabachnikoff, Billiards, Panoramas et Synthèses 1, (1995), Soc. Math. France, Paris Zbl0833.58001
  30. M. Troyanov, Les surfaces euclidiennes à singularités coniques, Enseign. Math. (2) 32 (1986), 79-94 Zbl0611.53035MR850552
  31. W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), 553-583 Zbl0676.32006MR1005006
  32. W. Veech, The billiard in a regular polygon, Geom. Funct. Anal. 2 (1992), 341-379 Zbl0760.58036MR1177316
  33. Ya.B. Vorobets, Plane structures and billiards in rational polyhedra: the Veech alternative (Russian), Uspekhi Mat. Nauk 51 (1996) Zbl0897.58029MR1392678
  34. C. Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems 18 (1998), 1019-1042 Zbl0915.58059MR1645350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.