Affine diffeomorphisms of translation surfaces : periodic points, fuchsian groups, and arithmeticity
Eugene Gutkin; Pascal Hubert; Thomas A. Schmidt
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 6, page 847-866
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGutkin, Eugene, Hubert, Pascal, and Schmidt, Thomas A.. "Affine diffeomorphisms of translation surfaces : periodic points, fuchsian groups, and arithmeticity." Annales scientifiques de l'École Normale Supérieure 36.6 (2003): 847-866. <http://eudml.org/doc/82620>.
@article{Gutkin2003,
author = {Gutkin, Eugene, Hubert, Pascal, Schmidt, Thomas A.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {6},
pages = {847-866},
publisher = {Elsevier},
title = {Affine diffeomorphisms of translation surfaces : periodic points, fuchsian groups, and arithmeticity},
url = {http://eudml.org/doc/82620},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Gutkin, Eugene
AU - Hubert, Pascal
AU - Schmidt, Thomas A.
TI - Affine diffeomorphisms of translation surfaces : periodic points, fuchsian groups, and arithmeticity
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 6
SP - 847
EP - 866
LA - eng
UR - http://eudml.org/doc/82620
ER -
References
top- [1] Arnoux P., Hubert P., Fractions continues sur les surfaces de Veech, J. Anal. Math.81 (2000) 35-64. Zbl1029.11035MR1785277
- [2] Beardon A.F., The Geometry of Discrete Groups, Springer-Verlag, New York, 1983. Zbl0528.30001MR698777
- [3] Earle C.J., Gardiner F.P., Teichmüller disks and Veech's F structures, Extremal Riemann Surfaces, in: Contemp. Math., vol. 201, Amer. Math. Soc, Providence, RI, 1997, pp. 165-189. Zbl0868.32027MR1429199
- [4] Eskin A., Masur H., Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems21 (2001) 443-478. Zbl1096.37501MR1827113
- [5] Farkas H.M., Kra I., Riemann Surfaces, 2nd Edition, Grad. Texts in Math., vol. 71, Springer-Verlag, Berlin, 1992. Zbl0764.30001MR1139765
- [6] Fox R.H., Kershner R.B., Concerning the transitive properties of geodesics on a rational polyhedron, Duke Math. J.2 (1936) 147-150. Zbl0014.03401MR1545913JFM62.0817.01
- [7] Gutkin E., Billiard flows on almost integrable polyhedral surfaces, Ergodic Theory Dynam. Systems4 (1984) 569-584. Zbl0569.58028MR779714
- [8] Gutkin E., Billiards in polygons: survey of recent results, J. Statist. Phys.83 (1996) 7-26. Zbl1081.37525MR1382759
- [9] Gutkin E., Branched coverings and closed geodesies in flat surfaces, with applications to billiards, in: Gambaudo J.-M., Hubert P., Tisseur P., Vaienti S. (Eds.), Dynamical Systems from Crystal to Chaos, World Scientific, Singapore, 2000, pp. 259-273. Zbl1196.37067MR1796164
- [10] Gutkin E., Judge C., The geometry and arithmetic of translation surfaces with applications to polygonal billiards, Math. Res. Lett.3 (1996) 391-403. Zbl0865.30060MR1397686
- [11] Gutkin E., Judge C., Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J.103 (2000) 191-213. Zbl0965.30019MR1760625
- [12] Hubbard J., Masur H., Quadratic differentials and foliations, Acta Math.142 (1979) 221-274. Zbl0415.30038MR523212
- [13] Hardy G.H., Wright E.M., An Introduction to the Theory of Numbers, Oxford Univ. Press, London, 1938. Zbl0020.29201MR568909
- [14] Hubert P., Schmidt T.A., Veech groups and polygonal coverings, J. Geom. Phys.35 (2000) 75-91. Zbl0977.30027MR1767943
- [15] Hubert P., Schmidt T.A., Invariants of translation surfaces, Ann. Inst. Fourier51 (2001) 461-495. Zbl0985.32008MR1824961
- [16] Katok A., Zemlyakov A., Topological transitivity of billiards in polygons, Math. Notes18 (1975) 760-764. Zbl0323.58012MR399423
- [17] Kenyon R., Smillie J., Billiards in rational-angled triangles, Comment. Math. Helv.75 (2000) 65-108. Zbl0967.37019MR1760496
- [18] Kerckhoff S., Masur H., Smillie J., Ergodicity of billiard flows and quadratic differentials, Ann. of Math.124 (1986) 293-311. Zbl0637.58010MR855297
- [19] Masur H., Tabachnikov S., Rational billiards and flat structures, in: Handbook on Dynamical Systems, vol. 1A, Elsevier, Amsterdam, 2002, pp. 1015-1090. Zbl1057.37034MR1928530
- [20] Puchta J.-Ch., On triangular billiards, Comment. Math. Helv.76 (2001) 501-505. Zbl1192.37048MR1854695
- [21] Schmoll M., On the asymptotic quadratic growth rate of saddle connections and periodic orbits on marked flat tori, Geom. Funct. Anal. (GAFA)12 (2002) 622-649. Zbl1073.37022MR1924375
- [22] Stäckel P., Geodätische Linien auf Polyederflächen, Rend. Circ. Mat. Palermo22 (1906) 141-151. JFM37.0502.03
- [23] Thurston W., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc.19 (1988) 417-431. Zbl0674.57008MR956596
- [24] Veech W.A., Dynamical systems on analytic manifolds of quadratic differentials, Preprint, 1984.
- [25] Veech W.A., The Teichmüller geodesic flow, Ann. of Math.124 (1986) 441-530. Zbl0658.32016MR866707
- [26] Veech W.A., Teichmüller curves in modular space, Eisenstein series, and an application to triangular billiards, Invent. Math.97 (1989) 553-583. Zbl0676.32006MR1005006
- [27] Veech W.A., The billiard in a regular polygon, Geom. Func. Anal. (GAFA)2 (1992) 341-379. Zbl0760.58036MR1177316
- [28] Veech W.A., Geometric realizations of hyperelliptic curves, in: Algorithms, Fractals, and Dynamics, Okayama/Kyoto, 1992, Plenum, New York, 1995, pp. 217-226. Zbl0859.30039MR1402493
- [29] Vorobets Ya., Plane structures and billiards in rational polygons: the Veech alternative, Russian Math. Surveys51 (1996) 779-817. Zbl0897.58029MR1436653
- [30] Ward C., Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems18 (1998) 1019-1042. Zbl0915.58059MR1645350
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.