Dirac structures and dynamical r -matrices

Zhang-Ju Liu[1]; Ping Xu[2]

  • [1] Peking University, Department of Mathematics, Beijing 100871 (Rép. Pop. Chine)
  • [2] Pennsylvania State University, Department of Mathematics, University Park PA 16802 (USA)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 3, page 835-859
  • ISSN: 0373-0956

Abstract

top
The purpose of this paper is to establish a connection between various objects such as dynamical r -matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical r -matrices of simple Lie algebras 𝔤 , and prove that dynamical r -matrices are in one-one correspondence with certain Lagrangian subalgebras of 𝔤 𝔤 .

How to cite

top

Liu, Zhang-Ju, and Xu, Ping. "Dirac structures and dynamical $r$-matrices." Annales de l’institut Fourier 51.3 (2001): 835-859. <http://eudml.org/doc/115931>.

@article{Liu2001,
abstract = {The purpose of this paper is to establish a connection between various objects such as dynamical $r$-matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical $r$-matrices of simple Lie algebras $\{\mathfrak \{g\}\}$, and prove that dynamical $r$-matrices are in one-one correspondence with certain Lagrangian subalgebras of $\{\mathfrak \{g\}\}\oplus \{\mathfrak \{g\}\}$.},
affiliation = {Peking University, Department of Mathematics, Beijing 100871 (Rép. Pop. Chine); Pennsylvania State University, Department of Mathematics, University Park PA 16802 (USA)},
author = {Liu, Zhang-Ju, Xu, Ping},
journal = {Annales de l’institut Fourier},
keywords = {dynamical $r$-matrices; Dirac structures; Lie bialgebroid; Courant algebroid; lagrangian subalgebra; dynamical r-matrices; Lagrangian subalgebra},
language = {eng},
number = {3},
pages = {835-859},
publisher = {Association des Annales de l'Institut Fourier},
title = {Dirac structures and dynamical $r$-matrices},
url = {http://eudml.org/doc/115931},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Liu, Zhang-Ju
AU - Xu, Ping
TI - Dirac structures and dynamical $r$-matrices
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 3
SP - 835
EP - 859
AB - The purpose of this paper is to establish a connection between various objects such as dynamical $r$-matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies on the theory of Dirac structures and Courant algebroids. In particular, we give a new method of classifying dynamical $r$-matrices of simple Lie algebras ${\mathfrak {g}}$, and prove that dynamical $r$-matrices are in one-one correspondence with certain Lagrangian subalgebras of ${\mathfrak {g}}\oplus {\mathfrak {g}}$.
LA - eng
KW - dynamical $r$-matrices; Dirac structures; Lie bialgebroid; Courant algebroid; lagrangian subalgebra; dynamical r-matrices; Lagrangian subalgebra
UR - http://eudml.org/doc/115931
ER -

References

top
  1. C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields, Annals of Math. (2) 115 (1982) Zbl0503.32007
  2. D. Arnaudon, E. Buffenoir, E. Ragoucy, and Ph. Roche, Universal solutions of quantum dynamical Yang-Baxter equation, Lett. Math. Phys. 44 (1998), 201-214 Zbl0973.81047
  3. J. Avan, Classical dynamical r-matrices for Calogero-Moser systems and their generalizations, q-alg/9706024 
  4. M. Bangoura, and Y. Kosmann-Schwarzbach, Equation de Yang-Baxter dynamique classique et algebroïdes de Lie, C. R. Acad. Sci. Paris, Série I 327 (1998), 541-546 Zbl0973.58007
  5. A. Belavin, and V. Drinfeld, Triangle equations and simple Lie algebras, Math. Phys. Review 4 (1984), 93-165 Zbl0553.58040
  6. E. Billey, J. Avan, and O. Babelon, The r-matrix structure of the Euler-Calogero-Moser model, Phys. Lett. A 186 (1994), 114-118 Zbl0941.37514
  7. E. Billey, J. Avan, and O. Babelon, Exact Yangian symmetry in the classical Euler-Calogero-Moser model, Phys. Lett. A 188 (1994), 263-271 Zbl0941.37512
  8. T.-J. Courant, Dirac manifolds, Trans. A.M.S. 319 (1990), 631-661 Zbl0850.70212
  9. V.-G. Drinfel'd, Quasi-Hopf algebras, Leningrad Math. J. 2 (1991), 829-860 Zbl0728.16021
  10. V.-G. Drinfel'd, On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys. 95 (1993), 524-525 Zbl0852.22018
  11. P. Etingof, and A. Varchenko, Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys. 192 (1998), 77-120 Zbl0915.17018
  12. G. Felder, Conformal field theory and integrable systems associated to elliptic curves, Proc. Int. Congr. Math. Zürich (1994), 1247-1255, Birkhäuser, Basel Zbl0852.17014
  13. C. Fronsdal, Quasi-Hopf deformation of quantum groups, Lett. Math. Phys. 40 (1997), 117-134 Zbl0882.17006
  14. M. Jimbo, H. Konno, Odake, and J. Shiraishi, Quasi-Hopf twistors for elliptic quantum groups, Transform. Groups 4 (1999), 303-327 Zbl0977.17012
  15. E. Karolinsky, Poisson homogeneous spaces of Poisson-Lie groups, (1997) Zbl0981.53078
  16. Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165 Zbl0837.17014
  17. Z.-J. Liu, Some remarks on Dirac structures and Poisson reductions, Banach Center Publ. 51 (2000), 165-173 Zbl0966.58013
  18. Z.-J. Liu, A. Weinstein, P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom. 45 (1997), 547-574 Zbl0885.58030
  19. Z.-J. Liu, A. Weinstein, P. Xu, Dirac structures and Poisson homogeneous spaces, Comm. Math. Phys. 192 (1998), 121-144 Zbl0921.58074
  20. Z.-J. Liu, P. Xu, Exact Lie bialgebroids and Poisson groupoids, Geom. Funct. Anal. 6 (1996), 138-145 Zbl0869.17016
  21. J.-H. Lu, Classical dynamical r -matrices and homogeneous Poisson structures on G / H and K / T , Comm. Math. Phys. 212 (2000), 337-370 Zbl1008.53064
  22. J.-H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Diff. Geom. 31 (1990), 501-526 Zbl0673.58018
  23. K. Mackenzie, and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 18 (1994), 415-452 Zbl0844.22005
  24. K. Mackenzie, and P. Xu, Integration of Lie bialgebroids, Topology 39 (2000), 445-467 Zbl0961.58009
  25. M.-A. Semenov-Tian-Shansky, Dressing transformations and Poisson Lie group actions, 21 (1985), 1237-1260, Publ. RIMS, Kyoto University Zbl0674.58038
  26. O. Schiffmann, On classification of dynamical r -matrices, Math. Res. Lett. 5 (1998), 13-30 Zbl0957.17020
  27. A. Weinstein, Poisson geometry, Diff. Geom. Appl. 9 (1998), 213-238 Zbl0930.37032
  28. P. Xu, Quantum groupoids associated to universal dynamical R-matrices, C. R. Acad. Sci. Paris, Série I 328 (1999), 327-332 Zbl0939.17013
  29. P. Xu, Quantum groupoids, Comm. Math. Phys. 216 (2001), 539-581 Zbl0986.17003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.