Dirac structures and dynamical -matrices
Zhang-Ju Liu[1]; Ping Xu[2]
- [1] Peking University, Department of Mathematics, Beijing 100871 (Rép. Pop. Chine)
- [2] Pennsylvania State University, Department of Mathematics, University Park PA 16802 (USA)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 3, page 835-859
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLiu, Zhang-Ju, and Xu, Ping. "Dirac structures and dynamical $r$-matrices." Annales de l’institut Fourier 51.3 (2001): 835-859. <http://eudml.org/doc/115931>.
@article{Liu2001,
abstract = {The purpose of this paper is to establish a connection between various objects such as
dynamical $r$-matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies
on the theory of Dirac structures and Courant algebroids. In particular, we give a new
method of classifying dynamical $r$-matrices of simple Lie algebras $\{\mathfrak \{g\}\}$, and
prove that dynamical $r$-matrices are in one-one correspondence with certain Lagrangian
subalgebras of $\{\mathfrak \{g\}\}\oplus \{\mathfrak \{g\}\}$.},
affiliation = {Peking University, Department of Mathematics, Beijing 100871 (Rép. Pop. Chine); Pennsylvania State University, Department of Mathematics, University Park PA 16802 (USA)},
author = {Liu, Zhang-Ju, Xu, Ping},
journal = {Annales de l’institut Fourier},
keywords = {dynamical $r$-matrices; Dirac structures; Lie bialgebroid; Courant algebroid; lagrangian subalgebra; dynamical r-matrices; Lagrangian subalgebra},
language = {eng},
number = {3},
pages = {835-859},
publisher = {Association des Annales de l'Institut Fourier},
title = {Dirac structures and dynamical $r$-matrices},
url = {http://eudml.org/doc/115931},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Liu, Zhang-Ju
AU - Xu, Ping
TI - Dirac structures and dynamical $r$-matrices
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 3
SP - 835
EP - 859
AB - The purpose of this paper is to establish a connection between various objects such as
dynamical $r$-matrices, Lie bialgebroids, and Lagrangian subalgebras. Our method relies
on the theory of Dirac structures and Courant algebroids. In particular, we give a new
method of classifying dynamical $r$-matrices of simple Lie algebras ${\mathfrak {g}}$, and
prove that dynamical $r$-matrices are in one-one correspondence with certain Lagrangian
subalgebras of ${\mathfrak {g}}\oplus {\mathfrak {g}}$.
LA - eng
KW - dynamical $r$-matrices; Dirac structures; Lie bialgebroid; Courant algebroid; lagrangian subalgebra; dynamical r-matrices; Lagrangian subalgebra
UR - http://eudml.org/doc/115931
ER -
References
top- C. Camacho, P. Sad, Invariant varieties through singularities of holomorphic vector fields, Annals of Math. (2) 115 (1982) Zbl0503.32007
- D. Arnaudon, E. Buffenoir, E. Ragoucy, and Ph. Roche, Universal solutions of quantum dynamical Yang-Baxter equation, Lett. Math. Phys. 44 (1998), 201-214 Zbl0973.81047
- J. Avan, Classical dynamical r-matrices for Calogero-Moser systems and their generalizations, q-alg/9706024
- M. Bangoura, and Y. Kosmann-Schwarzbach, Equation de Yang-Baxter dynamique classique et algebroïdes de Lie, C. R. Acad. Sci. Paris, Série I 327 (1998), 541-546 Zbl0973.58007
- A. Belavin, and V. Drinfeld, Triangle equations and simple Lie algebras, Math. Phys. Review 4 (1984), 93-165 Zbl0553.58040
- E. Billey, J. Avan, and O. Babelon, The r-matrix structure of the Euler-Calogero-Moser model, Phys. Lett. A 186 (1994), 114-118 Zbl0941.37514
- E. Billey, J. Avan, and O. Babelon, Exact Yangian symmetry in the classical Euler-Calogero-Moser model, Phys. Lett. A 188 (1994), 263-271 Zbl0941.37512
- T.-J. Courant, Dirac manifolds, Trans. A.M.S. 319 (1990), 631-661 Zbl0850.70212
- V.-G. Drinfel'd, Quasi-Hopf algebras, Leningrad Math. J. 2 (1991), 829-860 Zbl0728.16021
- V.-G. Drinfel'd, On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys. 95 (1993), 524-525 Zbl0852.22018
- P. Etingof, and A. Varchenko, Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys. 192 (1998), 77-120 Zbl0915.17018
- G. Felder, Conformal field theory and integrable systems associated to elliptic curves, Proc. Int. Congr. Math. Zürich (1994), 1247-1255, Birkhäuser, Basel Zbl0852.17014
- C. Fronsdal, Quasi-Hopf deformation of quantum groups, Lett. Math. Phys. 40 (1997), 117-134 Zbl0882.17006
- M. Jimbo, H. Konno, Odake, and J. Shiraishi, Quasi-Hopf twistors for elliptic quantum groups, Transform. Groups 4 (1999), 303-327 Zbl0977.17012
- E. Karolinsky, Poisson homogeneous spaces of Poisson-Lie groups, (1997) Zbl0981.53078
- Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165 Zbl0837.17014
- Z.-J. Liu, Some remarks on Dirac structures and Poisson reductions, Banach Center Publ. 51 (2000), 165-173 Zbl0966.58013
- Z.-J. Liu, A. Weinstein, P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geom. 45 (1997), 547-574 Zbl0885.58030
- Z.-J. Liu, A. Weinstein, P. Xu, Dirac structures and Poisson homogeneous spaces, Comm. Math. Phys. 192 (1998), 121-144 Zbl0921.58074
- Z.-J. Liu, P. Xu, Exact Lie bialgebroids and Poisson groupoids, Geom. Funct. Anal. 6 (1996), 138-145 Zbl0869.17016
- J.-H. Lu, Classical dynamical -matrices and homogeneous Poisson structures on and , Comm. Math. Phys. 212 (2000), 337-370 Zbl1008.53064
- J.-H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Diff. Geom. 31 (1990), 501-526 Zbl0673.58018
- K. Mackenzie, and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 18 (1994), 415-452 Zbl0844.22005
- K. Mackenzie, and P. Xu, Integration of Lie bialgebroids, Topology 39 (2000), 445-467 Zbl0961.58009
- M.-A. Semenov-Tian-Shansky, Dressing transformations and Poisson Lie group actions, 21 (1985), 1237-1260, Publ. RIMS, Kyoto University Zbl0674.58038
- O. Schiffmann, On classification of dynamical -matrices, Math. Res. Lett. 5 (1998), 13-30 Zbl0957.17020
- A. Weinstein, Poisson geometry, Diff. Geom. Appl. 9 (1998), 213-238 Zbl0930.37032
- P. Xu, Quantum groupoids associated to universal dynamical R-matrices, C. R. Acad. Sci. Paris, Série I 328 (1999), 327-332 Zbl0939.17013
- P. Xu, Quantum groupoids, Comm. Math. Phys. 216 (2001), 539-581 Zbl0986.17003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.