Dirac submanifolds and Poisson involutions

Ping Xu

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 3, page 403-430
  • ISSN: 0012-9593

How to cite

top

Xu, Ping. "Dirac submanifolds and Poisson involutions." Annales scientifiques de l'École Normale Supérieure 36.3 (2003): 403-430. <http://eudml.org/doc/82605>.

@article{Xu2003,
author = {Xu, Ping},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Dirac submanifold; symplectic subgroupoid; Poisson involutions; symplectic groupoid},
language = {eng},
number = {3},
pages = {403-430},
publisher = {Elsevier},
title = {Dirac submanifolds and Poisson involutions},
url = {http://eudml.org/doc/82605},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Xu, Ping
TI - Dirac submanifolds and Poisson involutions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 3
SP - 403
EP - 430
LA - eng
KW - Dirac submanifold; symplectic subgroupoid; Poisson involutions; symplectic groupoid
UR - http://eudml.org/doc/82605
ER -

References

top
  1. [1] Bangoura M., Kosmann-Schwarzbach Y., Équation de Yang–Baxter dynamique classique et algébroïdes de Lie, C. R. Acad. Sci. Paris, Série I327 (1998) 541-546. Zbl0973.58007MR1650591
  2. [2] Boalch P., Stokes matrices, Poisson Lie groups and Frobenius manifolds, Invent. Math.146 (2001) 479-506. Zbl1044.53060MR1869848
  3. [3] Bondal A., A symplectic groupoid of triangular bilinear forms and the braid group, Preprint, 1999. 
  4. [4] Bondal A., Symplectic groupoids related to Poisson–Lie groups, Preprint, 1999. MR2101283
  5. [5] Cannas da Silva A., Weinstein A., Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI, 1999. Zbl1135.58300MR1747916
  6. [6] Courant T.J., Dirac manifolds, Trans. Amer. Math. Soc.319 (1990) 631-661. Zbl0850.70212MR998124
  7. [7] Crainic M., Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, math.DG/0008064. Zbl1041.58007
  8. [8] Dirac P.A.M., Lectures in Quantum Mechanics, Yeshiva University, 1964. Zbl0141.44603
  9. [9] Dorfman I., Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, 1993. Zbl0717.58026MR1237398
  10. [10] Drinfel'd V.G., On Poisson homogeneous spaces of Poisson–Lie groups, Theoret. Math. Phys.95 (1993) 524-525. Zbl0852.22018MR1243249
  11. [11] Dubrovin B., Geometry of 2D topological field theories, in: Integrable Systems and Quantum Groups, Lecture Notes in Math., 1620, Springer, Berlin, 1996, pp. 120-348. Zbl0841.58065MR1397274
  12. [12] Etingof P., Varchenko A., Geometry and classification of solutions of the classical dynamical Yang–Baxter equation, Comm. Math. Phys.192 (1998) 77-120. Zbl0915.17018MR1612160
  13. [13] Felder G., Conformal field theory and integrable systems associated to elliptic curves, in: Proc. ICM Zürich, 1994, pp. 1247-1255. Zbl0852.17014MR1404026
  14. [14] Fernandes R., Completely integrable bi-Hamiltonian systems, Ph.D. Thesis, University of Minnesota, 1994. Zbl0796.58020MR1262723
  15. [15] Fernandes R., A note on Poisson symmetric spaces, in: Proceeding of the Cornelius Lanczos International Centenary Conference, 1994, pp. 638-642. 
  16. [16] Fernandes R., Connections in Poisson geometry I: Holonomy and invariants, J. Differential Geom.54 (2000) 303-365. Zbl1036.53060MR1818181
  17. [17] Fernandes R., Vanhaecke P., Hyperelliptic Prym varieties and integrable systems, Comm. Math. Phys.221 (2001) 169-196. Zbl0991.37038MR1846906
  18. [18] Ginzburg V., Weinstein A., Lie–Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc.5 (1992) 445-453. Zbl0766.58018MR1126117
  19. [19] Li L.-C., Parmentier S., On dynamical Poisson groupoids I, math.DG/0209212. 
  20. [20] Liu Z.-J., Weinstein A., Xu P., Manin triples for Lie bialgebroids, J. Differential Geom.45 (1997) 547-574. Zbl0885.58030MR1472888
  21. [21] Liu Z.-J., Weinstein A., Xu P., Dirac structures and Poisson homogeneous spaces, Comm. Math. Phys.192 (1998) 121-144. Zbl0921.58074MR1612164
  22. [22] Liu Z.-J., Xu P., Exact Lie bialgebroids and Poisson groupoids, Geom. Funct. Anal.6 (1996) 138-145. Zbl0869.17016MR1371234
  23. [23] Liu Z.-J., Xu P., Dirac structures and dynamical r-matrices, Ann. Inst. Fourier51 (2001) 831-859. Zbl1029.53088MR1838467
  24. [24] Lu J.H., Momentum mappings and reduction of Poisson actions, in: Symplectic Geometry, Groupoids, and Integrable Systems, MSRI Publ., 20, Springer, New York, 1991, pp. 209-226. Zbl0735.58004MR1104930
  25. [25] Lu J.H., Weinstein A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom.31 (1990) 501-526. Zbl0673.58018MR1037412
  26. [26] Lu J.H., Weinstein A., Groupoïdes symplectiques doubles des groupes de Lie–Poisson, C. R. Acad. Sci. Paris, Série I309 (1989) 951-954. Zbl0701.58025MR1054741
  27. [27] Mackenzie K., Xu P., Lie bialgebroids and Poisson groupoids, Duke Math. J.18 (1994) 415-452. Zbl0844.22005MR1262213
  28. [28] Mackenzie K., Xu P., Integration of Lie bialgebroids, Topology39 (2000) 445-467. Zbl0961.58009MR1746902
  29. [29] Marsden J., Ratiu T., Reduction of Poisson manifolds, Lett. Math. Phys.11 (1986) 161-169. Zbl0602.58016MR836071
  30. [30] Molino P., Structure transverse aux orbites de la représentation coadjointe : le cas des orbites réductives, Sém. Géom. Diff. USTL (Montpellier) (1984) 55-62. Zbl0598.58023
  31. [31] Richardson R.W., Springer T.A., The Bruhat order on symmetric varieties, Geom. Dedicata35 (1990) 389-436. Zbl0704.20039MR1066573
  32. [32] Springer T.A., Some results on algebraic groups with involutions, Adv. Stud. Pure Math.6 (1985) 525-543. Zbl0628.20036MR803346
  33. [33] Ugaglia M., On a Poisson structure on the space of Stokes matrices, Internat. Math. Res. Notices9 (1999) 473-493. Zbl0939.34073MR1692595
  34. [34] Weinstein A., The local structure of Poisson manifolds, J. Differential Geom.18 (1983) 523-557. Zbl0524.58011MR723816
  35. [35] Weinstein A., Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.)16 (1987) 101-104. Zbl0618.58020MR866024
  36. [36] Weinstein A., The modular automorphism group of a Poisson manifold, J. Geom. Phys.23 (1997) 379-394. Zbl0902.58013MR1484598
  37. [37] Xu P., Symplectic groupoids of reduced Poisson spaces, C. R. Acad. Sci. Paris, Série I314 (1992) 457-461. Zbl0760.58019MR1154386
  38. [38] Xu P., On Poisson groupoids, Internat. J. Math.6 (1995) 101-124. Zbl0836.58019MR1307306

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.