Surgery description of simple three folds cover of the 3-sphere branched along a link

Franck Harou[1]

  • [1] Université de Rennes 1, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex (France)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 5, page 1229-1242
  • ISSN: 0373-0956

Abstract

top
We present an algorithm for converting a branched cover description of a 3-manifold into a description by surgery.

How to cite

top

Harou, Franck. "Description chirurgicale des revêtements triples simples de $S^3$ ramifiés le long d’un entrelacs." Annales de l’institut Fourier 51.5 (2001): 1229-1242. <http://eudml.org/doc/115946>.

@article{Harou2001,
abstract = {Nous présentons un algorithme permettant de convertir une présentation de variété de dimension 3 comme revêtement simple à trois feuillets de la sphère en une présentation de chirurgie.},
affiliation = {Université de Rennes 1, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex (France)},
author = {Harou, Franck},
journal = {Annales de l’institut Fourier},
keywords = {3-manifold; branched cover; surgery; link; braid},
language = {fre},
number = {5},
pages = {1229-1242},
publisher = {Association des Annales de l'Institut Fourier},
title = {Description chirurgicale des revêtements triples simples de $S^3$ ramifiés le long d’un entrelacs},
url = {http://eudml.org/doc/115946},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Harou, Franck
TI - Description chirurgicale des revêtements triples simples de $S^3$ ramifiés le long d’un entrelacs
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 5
SP - 1229
EP - 1242
AB - Nous présentons un algorithme permettant de convertir une présentation de variété de dimension 3 comme revêtement simple à trois feuillets de la sphère en une présentation de chirurgie.
LA - fre
KW - 3-manifold; branched cover; surgery; link; braid
UR - http://eudml.org/doc/115946
ER -

References

top
  1. J. Birman, Braids, links and mapping class groups, vol. 84 (1975), Univ. Press, Princeton Zbl0305.57013MR425944
  2. J. Birman, B. Wajnryb, 3-fold branched coverings and the mapping class group of a surface, 1167 (1985), Springer-Verlag Zbl0589.57009MR827260
  3. G. Burde, H. Zieschang, Knots, vol. 5 (1985), De Gruyter Zbl0568.57001MR808776
  4. P. Dehornoy, A fast method for comparing braids, Adv. Math. 125 (1997), 200-235 Zbl0882.20021MR1434111
  5. F. Harou, (2000) 
  6. J. Montesinos, A representation of closed orientable 3-manifolds as 3-fold branched coverings of S 3 , Bull. Amer. Soc. 80 (1974), 845-846 Zbl0292.57003MR358784
  7. J. Montesinos, Surgery on links and double branched covers of S 3 , Knots, Groups and 3-Manifolds vol. 84 (227-259), Univ. Press, Princeton Zbl0325.55004
  8. J. Montesinos, Three-manifolds as 3-fold branched covers of S 3 , Quart. J. Math. Oxford 27 (1976), 85-90 Zbl0326.57002MR394630
  9. V.V. Prasolov, A.B. Sossinsky, Knots, Links, Braids and 3-manifolds, vol. 154 (1997), AMS Trans., Springer-Verlag Zbl0864.57002
  10. D. Rolfsen, Knots and links, (1977), Publish or Perish Zbl0339.55004MR1277811
  11. P. Vogel, Representation of links by braids : a new algorithm, Comment. Math. Helv. 65 (1990), 104-113 Zbl0703.57004MR1036132

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.