Generically strongly q -convex complex manifolds

Terrence Napier[1]; Mohan Ramachandran[2]

  • [1] Lehigh University, Department of Mathematics, Bethlehem PA 18015 (USA)
  • [2] SUNY at Buffalo, Department of Mathematics, Buffalo NY 14214 (USA)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 6, page 1553-1598
  • ISSN: 0373-0956

Abstract

top
Suppose ϕ is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold X . The main result is that if the real analytic set of points at which ϕ is not strongly q -convex is of dimension at most 2 q + 1 , then almost every sufficiently large sublevel of ϕ is strongly q -convex as a complex manifold. For X of dimension 2 , this is a special case of a theorem of Diederich and Ohsawa. A version for ϕ real analytic with corners is also obtained.

How to cite

top

Napier, Terrence, and Ramachandran, Mohan. "Generically strongly $q$-convex complex manifolds." Annales de l’institut Fourier 51.6 (2001): 1553-1598. <http://eudml.org/doc/115959>.

@article{Napier2001,
abstract = {Suppose $\varphi $ is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold $X$. The main result is that if the real analytic set of points at which $\varphi $ is not strongly $q$-convex is of dimension at most $2q+1$, then almost every sufficiently large sublevel of $\varphi $ is strongly $q$-convex as a complex manifold. For $X$ of dimension $2$, this is a special case of a theorem of Diederich and Ohsawa. A version for $\varphi $ real analytic with corners is also obtained.},
affiliation = {Lehigh University, Department of Mathematics, Bethlehem PA 18015 (USA); SUNY at Buffalo, Department of Mathematics, Buffalo NY 14214 (USA)},
author = {Napier, Terrence, Ramachandran, Mohan},
journal = {Annales de l’institut Fourier},
keywords = {analytic cycles; holomorphically convex; $q$-complete; -convexity; -complete},
language = {eng},
number = {6},
pages = {1553-1598},
publisher = {Association des Annales de l'Institut Fourier},
title = {Generically strongly $q$-convex complex manifolds},
url = {http://eudml.org/doc/115959},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Napier, Terrence
AU - Ramachandran, Mohan
TI - Generically strongly $q$-convex complex manifolds
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 6
SP - 1553
EP - 1598
AB - Suppose $\varphi $ is a real analytic plurisubharmonic exhaustion function on a connected noncompact complex manifold $X$. The main result is that if the real analytic set of points at which $\varphi $ is not strongly $q$-convex is of dimension at most $2q+1$, then almost every sufficiently large sublevel of $\varphi $ is strongly $q$-convex as a complex manifold. For $X$ of dimension $2$, this is a special case of a theorem of Diederich and Ohsawa. A version for $\varphi $ real analytic with corners is also obtained.
LA - eng
KW - analytic cycles; holomorphically convex; $q$-complete; -convexity; -complete
UR - http://eudml.org/doc/115959
ER -

References

top
  1. D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Séminaire F. Norguet : Fonctions de plusieurs variables complexes 1974/75 vol. 482 (1975), 1-158, Springer, Berlin-Heidelberg-New York Zbl0331.32008
  2. D. Barlet, Convexité de l'espace des cycles, Bull. Soc. Math. France 106 (1978), 373-397 Zbl0395.32009MR518045
  3. E. Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964), 289-304 Zbl0143.30302MR168801
  4. F. Bruhat, H. Cartan, Sur la structure des sous-ensembles analytiques-réels, C. R. Acad. Sci. Paris 244 (1957), 988-990 Zbl0081.17201MR86108
  5. F. Bruhat, H. Cartan, Sur les composantes irréductibles d'un sous-ensemble analytique-réel, C. R. Acad. Sci. Paris 244 (1957), 1123-1126 Zbl0081.39101MR88528
  6. F. Bruhat, H. Whitney, Quelque propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helv. 33 (1959), 132-160 Zbl0100.08101MR102094
  7. F. Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France 122 (1994), 255-284 Zbl0810.32013MR1273904
  8. H. Cartan, Quotients of complex analytic spaces, Contributions to function theory, Internat. colloq. function theory, Tata Inst. of Fundamental Research, Bombay (1960) Zbl0122.08702
  9. M. Coltoiu, Complete locally pluripolar sets, J. reine and angew. Math. 412 (1990), 108-112 Zbl0711.32008MR1074376
  10. J.-P. Demailly, Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Ecole Norm. Sup. 15 (1982), 457-511 Zbl0507.32021MR690650
  11. J.-P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Z. 204 (1990), 283-295 Zbl0682.32017MR1055992
  12. K. Diederich, J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141 Zbl0353.32025MR437806
  13. K. Diederich, J. E. Fornaess, Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J. 44 (1977), 641-662 Zbl0381.32014MR447634
  14. K. Diederich, J. E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. 107 (1978), 371-384 Zbl0378.32014MR477153
  15. K. Diederich, T. Ohsawa, A Levi problem on two-dimensional complex manifolds, Math. Ann. 261 (1982), 255-261 Zbl0502.32010MR675738
  16. F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123 Zbl0095.28004MR148939
  17. M. Freeman, Local complex foliation of real submanifolds, Math. Ann. 209 (1974), 1-30 Zbl0267.32006MR346185
  18. A. Fujiki, Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14 (1978/79), 1-52 Zbl0409.32016MR486648
  19. H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Ann. Math. 68 (1958), 460-472 Zbl0108.07804MR98847
  20. H. Grauert, O. Riemeschneider, Kählersche Mannigfältigkeiten mit hyper-q-konvexen Rand, Problems in analysis (A Symposium in Honor of S. Bochner, Princeton 1969) (1970), 61-79, Princeton University Press, Princeton Zbl0211.10302
  21. R. Greene, H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble) 25 (1975), 215-235 Zbl0307.31003MR382701
  22. A. Huckleberry, The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex, Math. Ann. 219 (1976), 127-137 Zbl0313.32017MR409892
  23. L.R. Hunt, J.J. Murray, Plurisubharmonic functions and a generalized Dirichlet problem, Mich. Math. J 25 (1978), 299-316 Zbl0378.32013MR512901
  24. T. Levi-Civita, Sulle funzione di due o più variabli complesse, Rend. Accad. Naz. Lincei. V 14 (1905), 492-499 Zbl36.0482.01
  25. S. Nakano, Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S., Kyoto 10 (1974), 101-110 Zbl0298.32019MR382735
  26. T. Napier, M. Ramachandran, Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995), 809-851 Zbl0860.53045MR1354291
  27. T. Napier, M. Ramachandran, The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds, Ann. Inst. Fourier (Grenoble) 47 (1997), 1345-1365 Zbl0904.32008MR1600387
  28. R. Narasimhan, The Levi problem for complex spaces II, Math. Ann. 146 (1962), 195-216 Zbl0131.30801MR182747
  29. T. Ohsawa, Completeness of noncompact analytic spaces, Publ. R.I.M.S., Kyoto 20 (1984), 683-692 Zbl0568.32008MR759689
  30. R. Remmert, Reduction of complex spaces, Seminars on analytic functions, Inst. for Advanced Study, Princeton (1957) Zbl0095.06204
  31. R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257-286 Zbl0153.15401MR222334
  32. Y.-T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100 Zbl0343.32014MR435447
  33. Y.-T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom. 17 (1982), 55-138 Zbl0497.32025MR658472
  34. J.-L. Stehlé, Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Séminaire Pierre Lelong (Analyse), Séminaire Pierre Lelong (Analyse), Année 1973--1974 vol. 474 (1975), 155-179, Springer, Berlin-Heidelberg-New York Zbl0309.32011
  35. W. Stoll, The fiber integral is constant, Math. Zeitsch. 104 (1968), 65-73 Zbl0164.09302MR224868
  36. H. Wu, On certain Kähler manifolds which are q -complete, Complex analysis of Several Variables vol. 41 (1984), 253-276, Amer. Math. Soc., Providence Zbl0552.32015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.