Generically strongly -convex complex manifolds
Terrence Napier[1]; Mohan Ramachandran[2]
- [1] Lehigh University, Department of Mathematics, Bethlehem PA 18015 (USA)
- [2] SUNY at Buffalo, Department of Mathematics, Buffalo NY 14214 (USA)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 6, page 1553-1598
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNapier, Terrence, and Ramachandran, Mohan. "Generically strongly $q$-convex complex manifolds." Annales de l’institut Fourier 51.6 (2001): 1553-1598. <http://eudml.org/doc/115959>.
@article{Napier2001,
abstract = {Suppose $\varphi $ is a real analytic plurisubharmonic exhaustion function on a connected
noncompact complex manifold $X$. The main result is that if the real analytic set of
points at which $\varphi $ is not strongly $q$-convex is of dimension at most $2q+1$,
then almost every sufficiently large sublevel of $\varphi $ is strongly $q$-convex as a
complex manifold. For $X$ of dimension $2$, this is a special case of a theorem of
Diederich and Ohsawa. A version for $\varphi $ real analytic with corners is also obtained.},
affiliation = {Lehigh University, Department of Mathematics, Bethlehem PA 18015 (USA); SUNY at Buffalo, Department of Mathematics, Buffalo NY 14214 (USA)},
author = {Napier, Terrence, Ramachandran, Mohan},
journal = {Annales de l’institut Fourier},
keywords = {analytic cycles; holomorphically convex; $q$-complete; -convexity; -complete},
language = {eng},
number = {6},
pages = {1553-1598},
publisher = {Association des Annales de l'Institut Fourier},
title = {Generically strongly $q$-convex complex manifolds},
url = {http://eudml.org/doc/115959},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Napier, Terrence
AU - Ramachandran, Mohan
TI - Generically strongly $q$-convex complex manifolds
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 6
SP - 1553
EP - 1598
AB - Suppose $\varphi $ is a real analytic plurisubharmonic exhaustion function on a connected
noncompact complex manifold $X$. The main result is that if the real analytic set of
points at which $\varphi $ is not strongly $q$-convex is of dimension at most $2q+1$,
then almost every sufficiently large sublevel of $\varphi $ is strongly $q$-convex as a
complex manifold. For $X$ of dimension $2$, this is a special case of a theorem of
Diederich and Ohsawa. A version for $\varphi $ real analytic with corners is also obtained.
LA - eng
KW - analytic cycles; holomorphically convex; $q$-complete; -convexity; -complete
UR - http://eudml.org/doc/115959
ER -
References
top- D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie, Séminaire F. Norguet : Fonctions de plusieurs variables complexes 1974/75 vol. 482 (1975), 1-158, Springer, Berlin-Heidelberg-New York Zbl0331.32008
- D. Barlet, Convexité de l'espace des cycles, Bull. Soc. Math. France 106 (1978), 373-397 Zbl0395.32009MR518045
- E. Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964), 289-304 Zbl0143.30302MR168801
- F. Bruhat, H. Cartan, Sur la structure des sous-ensembles analytiques-réels, C. R. Acad. Sci. Paris 244 (1957), 988-990 Zbl0081.17201MR86108
- F. Bruhat, H. Cartan, Sur les composantes irréductibles d'un sous-ensemble analytique-réel, C. R. Acad. Sci. Paris 244 (1957), 1123-1126 Zbl0081.39101MR88528
- F. Bruhat, H. Whitney, Quelque propriétés fondamentales des ensembles analytiques-réels, Comm. Math. Helv. 33 (1959), 132-160 Zbl0100.08101MR102094
- F. Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France 122 (1994), 255-284 Zbl0810.32013MR1273904
- H. Cartan, Quotients of complex analytic spaces, Contributions to function theory, Internat. colloq. function theory, Tata Inst. of Fundamental Research, Bombay (1960) Zbl0122.08702
- M. Coltoiu, Complete locally pluripolar sets, J. reine and angew. Math. 412 (1990), 108-112 Zbl0711.32008MR1074376
- J.-P. Demailly, Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Ecole Norm. Sup. 15 (1982), 457-511 Zbl0507.32021MR690650
- J.-P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Z. 204 (1990), 283-295 Zbl0682.32017MR1055992
- K. Diederich, J. E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141 Zbl0353.32025MR437806
- K. Diederich, J. E. Fornaess, Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J. 44 (1977), 641-662 Zbl0381.32014MR447634
- K. Diederich, J. E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. 107 (1978), 371-384 Zbl0378.32014MR477153
- K. Diederich, T. Ohsawa, A Levi problem on two-dimensional complex manifolds, Math. Ann. 261 (1982), 255-261 Zbl0502.32010MR675738
- F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123 Zbl0095.28004MR148939
- M. Freeman, Local complex foliation of real submanifolds, Math. Ann. 209 (1974), 1-30 Zbl0267.32006MR346185
- A. Fujiki, Closedness of the Douady spaces of compact Kähler spaces, Publ. Res. Inst. Math. Sci. 14 (1978/79), 1-52 Zbl0409.32016MR486648
- H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Ann. Math. 68 (1958), 460-472 Zbl0108.07804MR98847
- H. Grauert, O. Riemeschneider, Kählersche Mannigfältigkeiten mit hyper-q-konvexen Rand, Problems in analysis (A Symposium in Honor of S. Bochner, Princeton 1969) (1970), 61-79, Princeton University Press, Princeton Zbl0211.10302
- R. Greene, H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble) 25 (1975), 215-235 Zbl0307.31003MR382701
- A. Huckleberry, The Levi problem on pseudoconvex manifolds which are not strongly pseudoconvex, Math. Ann. 219 (1976), 127-137 Zbl0313.32017MR409892
- L.R. Hunt, J.J. Murray, Plurisubharmonic functions and a generalized Dirichlet problem, Mich. Math. J 25 (1978), 299-316 Zbl0378.32013MR512901
- T. Levi-Civita, Sulle funzione di due o più variabli complesse, Rend. Accad. Naz. Lincei. V 14 (1905), 492-499 Zbl36.0482.01
- S. Nakano, Vanishing theorems for weakly 1-complete manifolds II, Publ. R.I.M.S., Kyoto 10 (1974), 101-110 Zbl0298.32019MR382735
- T. Napier, M. Ramachandran, Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995), 809-851 Zbl0860.53045MR1354291
- T. Napier, M. Ramachandran, The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds, Ann. Inst. Fourier (Grenoble) 47 (1997), 1345-1365 Zbl0904.32008MR1600387
- R. Narasimhan, The Levi problem for complex spaces II, Math. Ann. 146 (1962), 195-216 Zbl0131.30801MR182747
- T. Ohsawa, Completeness of noncompact analytic spaces, Publ. R.I.M.S., Kyoto 20 (1984), 683-692 Zbl0568.32008MR759689
- R. Remmert, Reduction of complex spaces, Seminars on analytic functions, Inst. for Advanced Study, Princeton (1957) Zbl0095.06204
- R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257-286 Zbl0153.15401MR222334
- Y.-T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100 Zbl0343.32014MR435447
- Y.-T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom. 17 (1982), 55-138 Zbl0497.32025MR658472
- J.-L. Stehlé, Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Séminaire Pierre Lelong (Analyse), Séminaire Pierre Lelong (Analyse), Année 1973--1974 vol. 474 (1975), 155-179, Springer, Berlin-Heidelberg-New York Zbl0309.32011
- W. Stoll, The fiber integral is constant, Math. Zeitsch. 104 (1968), 65-73 Zbl0164.09302MR224868
- H. Wu, On certain Kähler manifolds which are -complete, Complex analysis of Several Variables vol. 41 (1984), 253-276, Amer. Math. Soc., Providence Zbl0552.32015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.