Embedding of open riemannian manifolds by harmonic functions
Annales de l'institut Fourier (1975)
- Volume: 25, Issue: 1, page 215-235
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGreene, Robert E., and Wu, H.. "Embedding of open riemannian manifolds by harmonic functions." Annales de l'institut Fourier 25.1 (1975): 215-235. <http://eudml.org/doc/74211>.
@article{Greene1975,
abstract = {Let $M$ be a noncompact Riemannian manifold of dimension $n$. Then there exists a proper embedding of $M$ into $\{\bf R\}^\{2n+1\}$ by harmonic functions on $M$. It is easy to find $2n+1$ harmonic functions which give an embedding. However, it is more difficult to achieve properness. The proof depends on the theorems of Lax-Malgrange and Aronszajn-Cordes in the theory of elliptic equations.},
author = {Greene, Robert E., Wu, H.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {215-235},
publisher = {Association des Annales de l'Institut Fourier},
title = {Embedding of open riemannian manifolds by harmonic functions},
url = {http://eudml.org/doc/74211},
volume = {25},
year = {1975},
}
TY - JOUR
AU - Greene, Robert E.
AU - Wu, H.
TI - Embedding of open riemannian manifolds by harmonic functions
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 1
SP - 215
EP - 235
AB - Let $M$ be a noncompact Riemannian manifold of dimension $n$. Then there exists a proper embedding of $M$ into ${\bf R}^{2n+1}$ by harmonic functions on $M$. It is easy to find $2n+1$ harmonic functions which give an embedding. However, it is more difficult to achieve properness. The proof depends on the theorems of Lax-Malgrange and Aronszajn-Cordes in the theory of elliptic equations.
LA - eng
UR - http://eudml.org/doc/74211
ER -
References
top- [1] N. ARONSZAJN, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., 36 (1957), 235-249. Zbl0084.30402MR19,1056c
- [2] S. BOCHNER, Analytic mappings of compact Riemann spaces into Euclidean space, Duke Math. J., 3 (1937), 339-354. Zbl0017.08903JFM63.1244.01
- [3] S.S. CAIRNS, On the triangulation of regular loci, Ann. of Math., 35 (1934), 579-587. Zbl0012.03605JFM60.1217.09
- [4] S.-S. CHERN, An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc., 6 (1955), 771-782. Zbl0066.15402MR17,657g
- [5] H.O. CORDES, Über die Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Göttingen, Math. Phys. K1. IIa, no 11 (1956), 239-258. Zbl0074.08002MR19,148a
- [6] W. FELLER, Über die Lösungen der linearen partiellen Differentialgleichungen zweiter Ordnung von elliptischen Typus, Math. Ann., 102 (1930), 633-649. Zbl56.0419.01JFM56.0419.01
- [7] H. GRAUERT, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math., 68 (1958), 460-472. Zbl0108.07804MR20 #5299
- [8] R.E. GREENE, Isometric Embedding of Riemannian and Pseudo-Riemannian Manifolds, Memoir 97, Amer. Math. Soc., 1970. Zbl0203.24004MR41 #7585
- [9] R.E. GREENE, and H. WU, Integrals of subharmonic functions on manifolds of nonnegative curvature (to appear). Zbl0342.31003
- [10] L. HÖRMANDER, An Introduction to Complex Analysis in Several variables. D. Van Nostrand, Princeton, New Jersey, 1966. Zbl0138.06203
- [11] P.D. LAX, A stability theorem for abstract differential equations and its application to the study of the local behavior of solutions of elliptic equations, Comm. Pur Appl. Math., 9 (1956), 747-766. Zbl0072.33004MR19,281a
- [12] B. MALGRANGE, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Annales de l'Institut Fourier, 6 (1955-1956), 271-355. Zbl0071.09002MR19,280a
- [13] C.B. MORREY, The analytic imbedding of abstract real-analytic manifolds, Ann. of Math., 68 (1958), 159-201. Zbl0090.38401MR20 #5504
- [14] J.R. MUNKRES, Elementary Differential Topology, Princeton University Press, Princeton, New Jersey, 1966.
- [15] R. NARASIMHAN, Analysis on Real and Complex Manifolds, North-Holland, Amsterdam, 1968. Zbl0188.25803MR40 #4972
- [16] J.F. NASH, The imbedding problem for Riemannian manifolds, Ann. of Math., 63 (1956), 20-63. Zbl0070.38603MR17,782b
- [17] A. PLIŚ, A smooth linear elliptic differential equation without a solution in a sphere, Comm. Pure Appl. Math., 14 (1961), 599-617. Zbl0163.13103MR25 #307
- [18] M.H. PROTTER, Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960), 81-91. Zbl0094.07901MR22 #3871
- [19] G. de RHAM, Variétés différentiables, Hermann, Paris, 1955. Zbl0065.32401
- [20] H.L. ROYDEN, The analytic approximation of differentiable mappings, Math. Ann., 139 (1960), 171-179. Zbl0091.37003MR22 #4067
- [21] H. WHITNEY, Analytic coordinate systems and arcs in a manifold, Ann. of Math., 38 (1937), 809-818. Zbl0017.42802JFM63.0651.01
- [22] H. WU, Remarks on the first main theorem in equidistribution theory. II, J. Differential Geometry, 2 (1968), 369-384. Zbl0177.11301MR43 #2247b
- [23] L. BERS, Local behavior of solutions of general linear elliptic equations, Comm. Pure Appl. Math., 8 (1955), 473-496. Zbl0066.08101MR17,743a
- [24] L. BERS, F. JOHN, and M. SCHECHTER, Partial Differential Equations, Interscience Publishers, New York, 1964. Zbl0126.00207
- [25] B. MALGRANGE, Plongement des variétés analytiques-réelles, Bull. Soc. Math. France, 85 (1957), 101-113. Zbl0079.39103MR20 #1338
Citations in EuDML Documents
top- Dennis M. Deturck, Jerry L. Kazdan, Some regularity theorems in riemannian geometry
- Barbara Drinovec Drnovšek, On proper discs in complex manifolds
- R. W. R. Darling, Martingales in manifolds. Definition, examples and behaviour under maps
- Luc Lemaire, Existence des applications harmoniques et courbure des variétés
- Christine Laurent-Thiébaut, Jürgen Leiterer, Finiteness and separation theorems for Dolbeault cohomologies with support conditions
- Bent Fuglede, Harmonic morphisms between riemannian manifolds
- Paul Baird, Harmonic morphisms and circle actions on 3- and 4-manifolds
- Terence Napier, Mohan Ramachandran, The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds
- Terrence Napier, Mohan Ramachandran, Generically strongly -convex complex manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.