Linearization of Poisson actions and singular values of matrix products

Anton Alekseev[1]; Eckhard Meinrenken[2]; Chris Woodward[3]

  • [1] Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case Postale 240, 1211 Genève 24 (Suisse)
  • [2] University of Toronto, Department of Mathematics, 100 St George Street, Toronto, Ont. (Canada)
  • [3] Rutgers University, Mathematics, Hill Center,110 Frelinghuysen road, Piscataway NJ 08854-8019 (USA )

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 6, page 1691-1717
  • ISSN: 0373-0956

Abstract

top
We prove that the linearization functor from the category of Hamiltonian K -actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian K - actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo isomorphism.

How to cite

top

Alekseev, Anton, Meinrenken, Eckhard, and Woodward, Chris. "Linearization of Poisson actions and singular values of matrix products." Annales de l’institut Fourier 51.6 (2001): 1691-1717. <http://eudml.org/doc/115964>.

@article{Alekseev2001,
abstract = {We prove that the linearization functor from the category of Hamiltonian $K$-actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian $K$- actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo isomorphism.},
affiliation = {Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case Postale 240, 1211 Genève 24 (Suisse); University of Toronto, Department of Mathematics, 100 St George Street, Toronto, Ont. (Canada); Rutgers University, Mathematics, Hill Center,110 Frelinghuysen road, Piscataway NJ 08854-8019 (USA )},
author = {Alekseev, Anton, Meinrenken, Eckhard, Woodward, Chris},
journal = {Annales de l’institut Fourier},
keywords = {moment maps; Poisson-Lie groups; singular values; symplectic manifold; Thomson conjecture; Duflo factor},
language = {eng},
number = {6},
pages = {1691-1717},
publisher = {Association des Annales de l'Institut Fourier},
title = {Linearization of Poisson actions and singular values of matrix products},
url = {http://eudml.org/doc/115964},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Alekseev, Anton
AU - Meinrenken, Eckhard
AU - Woodward, Chris
TI - Linearization of Poisson actions and singular values of matrix products
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 6
SP - 1691
EP - 1717
AB - We prove that the linearization functor from the category of Hamiltonian $K$-actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian $K$- actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo isomorphism.
LA - eng
KW - moment maps; Poisson-Lie groups; singular values; symplectic manifold; Thomson conjecture; Duflo factor
UR - http://eudml.org/doc/115964
ER -

References

top
  1. A. Alekseev, On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom. 45 (1997), 241-256 Zbl0912.53018MR1449971
  2. A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998), 445-495 Zbl0948.53045MR1638045
  3. A. Berenstein, R. Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, J. Amer. Math. Soc. 13 (2000), 433-466 Zbl0979.53092MR1750957
  4. P. Boalch, Stokes matrices and Poisson Lie groups, (2000) Zbl1044.53060
  5. V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986) Vol. 1, 2 (1987), 798-820, Amer. Math. Soc., Providence, RI 
  6. J. J. Duistermaat, Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution, Trans. Amer. Math. Soc. 275 (1983), 412-429 Zbl0504.58020MR678361
  7. S. Evens, J.-H. Lu, Poisson harmonic forms, Kostant harmonic forms, and the S 1 -equivariant cohomology of K / T , Adv. Math. 142 (1999), 171-220 Zbl0914.22009MR1680047
  8. H. Flaschka, T. Ratiu, A convexity theorem for Poisson actions of compact Lie groups, Ann. Sci. Ecole Norm. Sup. 29 (1996), 787-809 Zbl0877.58025MR1422991
  9. W. Fulton, Eigenvalues of sums of Hermitian matrices (after A. Klyachko), Séminaire Bourbaki n°252, exp. 845 (1997/98), 255-269 Zbl0929.15006
  10. S. Helgason, Differential geometry and symmetric spaces, Vol. XII (1962), Academic Press, New York-Londonc Zbl0111.18101MR145455
  11. S. Helgason, Geometric analysis on symmetric spaces, (1994), American Mathematical Society, Providence, RI Zbl0809.53057MR1280714
  12. J. Hilgert, K.H. Neeb, Poisson Lie groups and non-linear convexity theorems, Math. Nachr. 191 (1998), 153-187 Zbl0912.58013MR1621294
  13. M. Kapovich, B. Leeb, J. Millson, Polygons in symmetric spaces and euclidean buildings (Preprint, in preparation) Zbl1205.53037
  14. A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), 419-445 Zbl0915.14010MR1654578
  15. A. Klyachko, Random walks on symmetric spaces and inequalities for matrix spectra, Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Sprectral Problem (Coimbra, 1999) 319 (2000), 37-59 Zbl0980.15015
  16. S. Levendorski, Y. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), 141-170 Zbl0729.17011MR1116413
  17. J.-H. Lu, Momentum mappings and reduction of Poisson actions, Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989) (1991), 209-226, Springer, New York Zbl0735.58004
  18. J.-H. Lu, Coordinates on Schubert cells, Kostant’s harmonic forms, and the Bruhat Poisson structure on G / B , Transform. Groups 4 (1999), 355-374 Zbl0938.22012MR1726697
  19. J.-H. Lu, T. Ratiu, On the nonlinear convexity theorem of Kostant, J. Amer. Math. Soc. 4 (1991), 349-363 Zbl0785.22019MR1086967
  20. J.-H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), 501-526 Zbl0673.58018MR1037412
  21. L. O' Shea, R. Sjamaar, Moment maps and Riemannian symmetric pairs, Math. Ann. 317 (2000), 415-457 Zbl0985.37056MR1776111
  22. F. Rouvière, Espaces symétriques et méthode de Kashiwara-Vergne, Ann. Sci. École Norm. Sup. (4) 19 (1986), 553-581 Zbl0612.43012MR875088
  23. C. Torossian, L'homomorphisme de Harish-Chandra pour les paires symétriques orthogonales et parties radiales des opérateurs différentiels invariants sur les espaces symétriques, Bull. Soc. Math. France 126 (1998), 295-354 Zbl0919.22003MR1682809

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.