Lie theory and the Chern–Weil homomorphism

Anton Alekseev[1]; Eckhard Meinrenken[2]

  • [1] Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case Postale 240, 1211 Genève 24 (Suisse)
  • [2] University of Toronto, Department of Mathematics, 100 St George Street, Toronto, Ont. (Canada)

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 2, page 303-338
  • ISSN: 0012-9593

How to cite

top

Alekseev, Anton, and Meinrenken, Eckhard. "Lie theory and the Chern–Weil homomorphism." Annales scientifiques de l'École Normale Supérieure 38.2 (2005): 303-338. <http://eudml.org/doc/82660>.

@article{Alekseev2005,
affiliation = {Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case Postale 240, 1211 Genève 24 (Suisse); University of Toronto, Department of Mathematics, 100 St George Street, Toronto, Ont. (Canada)},
author = {Alekseev, Anton, Meinrenken, Eckhard},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Chern-Weil homomorphism},
language = {eng},
number = {2},
pages = {303-338},
publisher = {Elsevier},
title = {Lie theory and the Chern–Weil homomorphism},
url = {http://eudml.org/doc/82660},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Alekseev, Anton
AU - Meinrenken, Eckhard
TI - Lie theory and the Chern–Weil homomorphism
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 2
SP - 303
EP - 338
LA - eng
KW - Chern-Weil homomorphism
UR - http://eudml.org/doc/82660
ER -

References

top
  1. [1] Alekseev A., Meinrenken E., The non-commutative Weil algebra, Invent. Math.139 (2000) 135-172. Zbl0945.57017MR1728878
  2. [2] Alekseev A., Meinrenken E., Poisson geometry and the Kashiwara–Vergne conjecture, C. R. Math. Acad. Sci. Paris335 (9) (2002) 723-728. Zbl1057.17004MR1951805
  3. [3] Alekseev A., Meinrenken E., Clifford algebras and the classical dynamical Yang–Baxter equation, Math. Res. Lett.10 (2–3) (2003) 253-268. Zbl1139.17308MR1981902
  4. [4] Alekseev A., Meinrenken E., Woodward C., Linearization of Poisson actions and singular values of matrix products, Ann. Inst. Fourier (Grenoble)51 (6) (2001) 1691-1717. Zbl1012.53064MR1871286
  5. [5] Andler M., Dvorsky A., Sahi S., Deformation quantization and invariant distributions, C. R. Acad. Sci. Paris Sér. I Math.330 (2) (2000) 115-120, math.QA/9905065. Zbl0957.22022MR1745177
  6. [6] Andler M., Dvorsky A., Sahi S., Kontsevich quantization and invariant distributions on Lie groups, Ann. Sci. École Norm. Sup. (4)35 (3) (2002) 371-390. Zbl1009.22020MR1914002
  7. [7] Andler M., Sahi S., Torossian C., Convolution of invariant distributions: Proof of the Kashiwara–Vergne conjecture, Lett. Math. Phys.69 (2004) 177-203. Zbl1059.22008MR2104443
  8. [8] Bott R., Lectures on characteristic classes and foliations, in: Lectures on Algebraic and Differential Topology (Second Latin American School in Math., Mexico City, 1971), Lecture Notes in Math., vol. 279, Springer, Berlin, 1972, pp. 1-94, Notes by Lawrence Conlon, with two appendices by J. Stasheff. Zbl0241.57010MR362335
  9. [9] Cartan H., Notions d'algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, in: Colloque de topologie (espaces fibrés) (Bruxelles) Georges Thone, Liège, Masson et Cie, Paris, 1950. Zbl0045.30601
  10. [10] Chern S.S., Characteristic classes of Hermitian manifolds, Ann. of Math. (2)47 (1946) 85-121. Zbl0060.41416MR15793
  11. [11] Corwin L., Ne'eman Y., Sternberg S., Graded Lie algebras in mathematics and physics (Bose–Fermi symmetry), Rev. Modern Phys.47 (1975) 573-603. Zbl0557.17004MR438925
  12. [12] Deligne P., Morgan J., Notes on supersymmetry (following Joseph Bernstein), in: Quantum Fields and Strings: A Course for Mathematicians, vols. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 41-97. Zbl1170.58302MR1701597
  13. [13] Duflo M., Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup.10 (1977) 265-288. Zbl0353.22009MR444841
  14. [14] Duflo M., Opérateurs différentiels invariants sur un espace symétrique, C. R. Acad. Sci. Paris Sér. 289 (2) (1979) A135-A137. Zbl0419.43012MR549087
  15. [15] Duistermaat J.J., On the similarity between the Iwasawa projection and the diagonal part, Mém. Soc. Math. France (NS)15 (1984) 129-138, Harmonic analysis on Lie groups and symmetric spaces (Kleebach, 1983). Zbl0564.22007MR789082
  16. [16] Dupont J.L., Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology15 (3) (1976) 233-245. Zbl0331.55012MR413122
  17. [17] Gelfand I.M., Smirnov M.M., The algebra of Chern–Simons classes, the Poisson bracket on it, and the action of the gauge group, in: Lie Theory and Geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 261-288. Zbl0842.58025MR1327537
  18. [18] Guillemin V., Sternberg S., Supersymmetry and Equivariant de Rham Theory, Springer-Verlag, Berlin, 1999. Zbl0934.55007MR1689252
  19. [19] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978. Zbl0451.53038MR514561
  20. [20] Huang J.-H., Pandzic P., Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc.15 (1) (2002) 185-202, (electronic). Zbl0980.22013MR1862801
  21. [21] Kac V., Vertex Algebras for Beginners, University Lecture Series, vol. 10, Amer. Math. Soc., Providence, RI, 1998. Zbl0924.17023MR1651389
  22. [22] Kalkman J., A BRST model applied to symplectic geometry, Ph.D. thesis, Universiteit Utrecht, 1993. Zbl0776.55003
  23. [23] Kashiwara M., Vergne M., The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math.47 (1978) 249-272. Zbl0404.22012MR492078
  24. [24] Knapp A.W., Lie Groups Beyond an Introduction, Progr. Math., vol. 140, Birkhäuser Boston, Boston, MA, 2002, MR 2003c:22001. Zbl1075.22501MR1920389
  25. [25] Kostant B., A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J.100 (3) (1999) 447-501. Zbl0952.17005MR1719734
  26. [26] Kostant B., Sternberg S., Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Phys.176 (1987) 49-113. Zbl0642.17003MR893479
  27. [27] Kostant B., Dirac cohomology for the cubic Dirac operator, in: Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 69-93. Zbl1165.17301MR1985723
  28. [28] Kumar S., A remark on universal connections, Math. Ann.260 (4) (1982) 453-462, MR 84d:53028. Zbl0476.55019MR670193
  29. [29] Kumar S., Induction functor in non-commutative equivariant cohomology and Dirac cohomology. Zbl1090.22007
  30. [30] Lichnerowicz A., Opérateurs différentiels invariants sur un espace symétrique, C. R. Acad. Sci. Paris256 (1963) 3548-3550. Zbl0119.37601MR149500
  31. [31] Lichnerowicz A., Opérateurs différentiels invariants sur un espace homogène, Ann. Sci. École Norm. Sup. (3)81 (1964) 341-385. Zbl0138.42801MR187174
  32. [32] Markl M., Homotopy algebras are homotopy algebras, Forum. Math.16 (1) (2004) 129-160. Zbl1067.55011MR2034546
  33. [33] May J.P., Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992, Reprint of the 1967 original. Zbl0769.55001MR1206474
  34. [34] Medina A., Revoy Ph., Caractérisation des groupes de Lie ayant une pseudo-métrique bi-invariante. Applications, in: South Rhone Seminar on Geometry, III (Lyon, 1983), Travaux en Cours, Hermann, Paris, 1984, pp. 149-166. Zbl0539.53039MR753868
  35. [35] Mostow M., Perchik J., Notes on Gelfand–Fuks cohomology and characteristic classes (lectures delivered by R. Bott), in: Proceedings of the Eleventh Annual Holiday Symposium, New Mexico State University, 1973, pp. 1-126. 
  36. [36] Narasimhan M.S., Ramanan S., Existence of universal connections, Amer. J. Math.83 (1961) 563-572. Zbl0114.38203MR133772
  37. [37] Rouvière F., Espaces symétriques et méthode de Kashiwara–Vergne, Ann. Sci. École Norm. Sup. (4)19 (4) (1986) 553-581. Zbl0612.43012MR875088
  38. [38] Segal G., Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math.34 (1968) 105-112. Zbl0199.26404MR232393
  39. [39] Severa P., Some titles containing the words “homotopy” and “symplectic”, e.g. this one, math.SG/0105080. 
  40. [40] Shulman H., On characteristic classes, 1972, Ph.D. thesis, Berkeley. 
  41. [41] Torossian C., Méthodes de Kashiwara–Vergne–Rouvière pour les espaces symétriques, in: Noncommutative Harmonic Analysis, Progr. Math., vol. 220, Birkhäuser Boston, Boston, MA, 2004, pp. 459-486. Zbl1061.22011MR2036581
  42. [42] Torossian C., Paires symétriques orthogonales et isomorphisme de Rouvière, J. Lie Theory15 (1) (2005) 79-87. Zbl1062.22027MR2115229
  43. [43] Vergne M., Le centre de l'algèbre enveloppante et la formule de Campbell–Hausdorff, C. R. Acad. Sci. Paris Sér. I Math.329 (9) (1999) 767-772. Zbl0989.17007MR1724537
  44. [44] Weil A., Géométrie différentielle des espaces fibrés (Letters to Chevalley and Koszul), 1949, in: Oeuvres scientifiques, vol. 1, Springer, Berlin, 1979. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.