Lie theory and the Chern–Weil homomorphism
Anton Alekseev[1]; Eckhard Meinrenken[2]
- [1] Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case Postale 240, 1211 Genève 24 (Suisse)
- [2] University of Toronto, Department of Mathematics, 100 St George Street, Toronto, Ont. (Canada)
Annales scientifiques de l'École Normale Supérieure (2005)
- Volume: 38, Issue: 2, page 303-338
- ISSN: 0012-9593
Access Full Article
topHow to cite
topAlekseev, Anton, and Meinrenken, Eckhard. "Lie theory and the Chern–Weil homomorphism." Annales scientifiques de l'École Normale Supérieure 38.2 (2005): 303-338. <http://eudml.org/doc/82660>.
@article{Alekseev2005,
affiliation = {Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case Postale 240, 1211 Genève 24 (Suisse); University of Toronto, Department of Mathematics, 100 St George Street, Toronto, Ont. (Canada)},
author = {Alekseev, Anton, Meinrenken, Eckhard},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Chern-Weil homomorphism},
language = {eng},
number = {2},
pages = {303-338},
publisher = {Elsevier},
title = {Lie theory and the Chern–Weil homomorphism},
url = {http://eudml.org/doc/82660},
volume = {38},
year = {2005},
}
TY - JOUR
AU - Alekseev, Anton
AU - Meinrenken, Eckhard
TI - Lie theory and the Chern–Weil homomorphism
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 2
SP - 303
EP - 338
LA - eng
KW - Chern-Weil homomorphism
UR - http://eudml.org/doc/82660
ER -
References
top- [1] Alekseev A., Meinrenken E., The non-commutative Weil algebra, Invent. Math.139 (2000) 135-172. Zbl0945.57017MR1728878
- [2] Alekseev A., Meinrenken E., Poisson geometry and the Kashiwara–Vergne conjecture, C. R. Math. Acad. Sci. Paris335 (9) (2002) 723-728. Zbl1057.17004MR1951805
- [3] Alekseev A., Meinrenken E., Clifford algebras and the classical dynamical Yang–Baxter equation, Math. Res. Lett.10 (2–3) (2003) 253-268. Zbl1139.17308MR1981902
- [4] Alekseev A., Meinrenken E., Woodward C., Linearization of Poisson actions and singular values of matrix products, Ann. Inst. Fourier (Grenoble)51 (6) (2001) 1691-1717. Zbl1012.53064MR1871286
- [5] Andler M., Dvorsky A., Sahi S., Deformation quantization and invariant distributions, C. R. Acad. Sci. Paris Sér. I Math.330 (2) (2000) 115-120, math.QA/9905065. Zbl0957.22022MR1745177
- [6] Andler M., Dvorsky A., Sahi S., Kontsevich quantization and invariant distributions on Lie groups, Ann. Sci. École Norm. Sup. (4)35 (3) (2002) 371-390. Zbl1009.22020MR1914002
- [7] Andler M., Sahi S., Torossian C., Convolution of invariant distributions: Proof of the Kashiwara–Vergne conjecture, Lett. Math. Phys.69 (2004) 177-203. Zbl1059.22008MR2104443
- [8] Bott R., Lectures on characteristic classes and foliations, in: Lectures on Algebraic and Differential Topology (Second Latin American School in Math., Mexico City, 1971), Lecture Notes in Math., vol. 279, Springer, Berlin, 1972, pp. 1-94, Notes by Lawrence Conlon, with two appendices by J. Stasheff. Zbl0241.57010MR362335
- [9] Cartan H., Notions d'algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, in: Colloque de topologie (espaces fibrés) (Bruxelles) Georges Thone, Liège, Masson et Cie, Paris, 1950. Zbl0045.30601
- [10] Chern S.S., Characteristic classes of Hermitian manifolds, Ann. of Math. (2)47 (1946) 85-121. Zbl0060.41416MR15793
- [11] Corwin L., Ne'eman Y., Sternberg S., Graded Lie algebras in mathematics and physics (Bose–Fermi symmetry), Rev. Modern Phys.47 (1975) 573-603. Zbl0557.17004MR438925
- [12] Deligne P., Morgan J., Notes on supersymmetry (following Joseph Bernstein), in: Quantum Fields and Strings: A Course for Mathematicians, vols. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 41-97. Zbl1170.58302MR1701597
- [13] Duflo M., Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup.10 (1977) 265-288. Zbl0353.22009MR444841
- [14] Duflo M., Opérateurs différentiels invariants sur un espace symétrique, C. R. Acad. Sci. Paris Sér. 289 (2) (1979) A135-A137. Zbl0419.43012MR549087
- [15] Duistermaat J.J., On the similarity between the Iwasawa projection and the diagonal part, Mém. Soc. Math. France (NS)15 (1984) 129-138, Harmonic analysis on Lie groups and symmetric spaces (Kleebach, 1983). Zbl0564.22007MR789082
- [16] Dupont J.L., Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology15 (3) (1976) 233-245. Zbl0331.55012MR413122
- [17] Gelfand I.M., Smirnov M.M., The algebra of Chern–Simons classes, the Poisson bracket on it, and the action of the gauge group, in: Lie Theory and Geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 261-288. Zbl0842.58025MR1327537
- [18] Guillemin V., Sternberg S., Supersymmetry and Equivariant de Rham Theory, Springer-Verlag, Berlin, 1999. Zbl0934.55007MR1689252
- [19] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978. Zbl0451.53038MR514561
- [20] Huang J.-H., Pandzic P., Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc.15 (1) (2002) 185-202, (electronic). Zbl0980.22013MR1862801
- [21] Kac V., Vertex Algebras for Beginners, University Lecture Series, vol. 10, Amer. Math. Soc., Providence, RI, 1998. Zbl0924.17023MR1651389
- [22] Kalkman J., A BRST model applied to symplectic geometry, Ph.D. thesis, Universiteit Utrecht, 1993. Zbl0776.55003
- [23] Kashiwara M., Vergne M., The Campbell–Hausdorff formula and invariant hyperfunctions, Invent. Math.47 (1978) 249-272. Zbl0404.22012MR492078
- [24] Knapp A.W., Lie Groups Beyond an Introduction, Progr. Math., vol. 140, Birkhäuser Boston, Boston, MA, 2002, MR 2003c:22001. Zbl1075.22501MR1920389
- [25] Kostant B., A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J.100 (3) (1999) 447-501. Zbl0952.17005MR1719734
- [26] Kostant B., Sternberg S., Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Phys.176 (1987) 49-113. Zbl0642.17003MR893479
- [27] Kostant B., Dirac cohomology for the cubic Dirac operator, in: Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 69-93. Zbl1165.17301MR1985723
- [28] Kumar S., A remark on universal connections, Math. Ann.260 (4) (1982) 453-462, MR 84d:53028. Zbl0476.55019MR670193
- [29] Kumar S., Induction functor in non-commutative equivariant cohomology and Dirac cohomology. Zbl1090.22007
- [30] Lichnerowicz A., Opérateurs différentiels invariants sur un espace symétrique, C. R. Acad. Sci. Paris256 (1963) 3548-3550. Zbl0119.37601MR149500
- [31] Lichnerowicz A., Opérateurs différentiels invariants sur un espace homogène, Ann. Sci. École Norm. Sup. (3)81 (1964) 341-385. Zbl0138.42801MR187174
- [32] Markl M., Homotopy algebras are homotopy algebras, Forum. Math.16 (1) (2004) 129-160. Zbl1067.55011MR2034546
- [33] May J.P., Simplicial Objects in Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992, Reprint of the 1967 original. Zbl0769.55001MR1206474
- [34] Medina A., Revoy Ph., Caractérisation des groupes de Lie ayant une pseudo-métrique bi-invariante. Applications, in: South Rhone Seminar on Geometry, III (Lyon, 1983), Travaux en Cours, Hermann, Paris, 1984, pp. 149-166. Zbl0539.53039MR753868
- [35] Mostow M., Perchik J., Notes on Gelfand–Fuks cohomology and characteristic classes (lectures delivered by R. Bott), in: Proceedings of the Eleventh Annual Holiday Symposium, New Mexico State University, 1973, pp. 1-126.
- [36] Narasimhan M.S., Ramanan S., Existence of universal connections, Amer. J. Math.83 (1961) 563-572. Zbl0114.38203MR133772
- [37] Rouvière F., Espaces symétriques et méthode de Kashiwara–Vergne, Ann. Sci. École Norm. Sup. (4)19 (4) (1986) 553-581. Zbl0612.43012MR875088
- [38] Segal G., Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math.34 (1968) 105-112. Zbl0199.26404MR232393
- [39] Severa P., Some titles containing the words “homotopy” and “symplectic”, e.g. this one, math.SG/0105080.
- [40] Shulman H., On characteristic classes, 1972, Ph.D. thesis, Berkeley.
- [41] Torossian C., Méthodes de Kashiwara–Vergne–Rouvière pour les espaces symétriques, in: Noncommutative Harmonic Analysis, Progr. Math., vol. 220, Birkhäuser Boston, Boston, MA, 2004, pp. 459-486. Zbl1061.22011MR2036581
- [42] Torossian C., Paires symétriques orthogonales et isomorphisme de Rouvière, J. Lie Theory15 (1) (2005) 79-87. Zbl1062.22027MR2115229
- [43] Vergne M., Le centre de l'algèbre enveloppante et la formule de Campbell–Hausdorff, C. R. Acad. Sci. Paris Sér. I Math.329 (9) (1999) 767-772. Zbl0989.17007MR1724537
- [44] Weil A., Géométrie différentielle des espaces fibrés (Letters to Chevalley and Koszul), 1949, in: Oeuvres scientifiques, vol. 1, Springer, Berlin, 1979.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.