A compactification of with no non-constant meromorphic functions
Jun-Muk Hwang[1]; Dror Varolin[2]
- [1] Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud)
- [2] University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 1, page 245-253
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHwang, Jun-Muk, and Varolin, Dror. "A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions." Annales de l’institut Fourier 52.1 (2002): 245-253. <http://eudml.org/doc/115975>.
@article{Hwang2002,
abstract = {For each 2-dimensional complex torus $T$, we construct a compact complex manifold $X(T)$ with a $\{\mathbb \{C\}\}^2$-action, which compactifies $(\{\mathbb \{C\}\}^*)^4$ such that the quotient of
$(\{\mathbb \{C\}\}^*)^4$ by the $\{\mathbb \{C\}\}^2$-action is biholomorphic to $T$. For a general $T$,
we show that $X(T)$ has no non-constant meromorphic functions.},
affiliation = {Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud); University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)},
author = {Hwang, Jun-Muk, Varolin, Dror},
journal = {Annales de l’institut Fourier},
keywords = {compactification; complex torus},
language = {eng},
number = {1},
pages = {245-253},
publisher = {Association des Annales de l'Institut Fourier},
title = {A compactification of $(\{\mathbb \{C\}\}^*)^4$ with no non-constant meromorphic functions},
url = {http://eudml.org/doc/115975},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Hwang, Jun-Muk
AU - Varolin, Dror
TI - A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 245
EP - 253
AB - For each 2-dimensional complex torus $T$, we construct a compact complex manifold $X(T)$ with a ${\mathbb {C}}^2$-action, which compactifies $({\mathbb {C}}^*)^4$ such that the quotient of
$({\mathbb {C}}^*)^4$ by the ${\mathbb {C}}^2$-action is biholomorphic to $T$. For a general $T$,
we show that $X(T)$ has no non-constant meromorphic functions.
LA - eng
KW - compactification; complex torus
UR - http://eudml.org/doc/115975
ER -
References
top- J.-P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
- C. Gellhaus, Äquivariante Kompaktifizierungen des , Math. Zeit. 206 (1991), 211-217 Zbl0693.32015MR1091936
- R. Hartshorne, Ample subvarieties of algebraic varieties, Vol. 156 (1970), Springer-Verlag, Berlin-Heidelberg-New York Zbl0208.48901MR282977
- S. Kosarew, T. Peternell, Formal cohomology, analytic cohomology and non-algebraic manifolds, Compositio Math 74 (1990), 299-325 Zbl0709.32009MR1055698
- T. Peternell, M. Schneider, Compactifications of : A survey, Proc. Symp. Pure Math 52 (1991), 455-466 Zbl0745.32012MR1128563
- J.-P. Rosay, W. Rudin, Holomorphic maps from to , Trans. Amer. Math. Soc. 310 (1988), 47-86 Zbl0708.58003MR929658
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.