A compactification of ( * ) 4 with no non-constant meromorphic functions

Jun-Muk Hwang[1]; Dror Varolin[2]

  • [1] Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud)
  • [2] University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 1, page 245-253
  • ISSN: 0373-0956

Abstract

top
For each 2-dimensional complex torus T , we construct a compact complex manifold X ( T ) with a 2 -action, which compactifies ( * ) 4 such that the quotient of ( * ) 4 by the 2 -action is biholomorphic to T . For a general T , we show that X ( T ) has no non-constant meromorphic functions.

How to cite

top

Hwang, Jun-Muk, and Varolin, Dror. "A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions." Annales de l’institut Fourier 52.1 (2002): 245-253. <http://eudml.org/doc/115975>.

@article{Hwang2002,
abstract = {For each 2-dimensional complex torus $T$, we construct a compact complex manifold $X(T)$ with a $\{\mathbb \{C\}\}^2$-action, which compactifies $(\{\mathbb \{C\}\}^*)^4$ such that the quotient of $(\{\mathbb \{C\}\}^*)^4$ by the $\{\mathbb \{C\}\}^2$-action is biholomorphic to $T$. For a general $T$, we show that $X(T)$ has no non-constant meromorphic functions.},
affiliation = {Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Séoul 130-012 (Corée Sud); University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)},
author = {Hwang, Jun-Muk, Varolin, Dror},
journal = {Annales de l’institut Fourier},
keywords = {compactification; complex torus},
language = {eng},
number = {1},
pages = {245-253},
publisher = {Association des Annales de l'Institut Fourier},
title = {A compactification of $(\{\mathbb \{C\}\}^*)^4$ with no non-constant meromorphic functions},
url = {http://eudml.org/doc/115975},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Hwang, Jun-Muk
AU - Varolin, Dror
TI - A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 245
EP - 253
AB - For each 2-dimensional complex torus $T$, we construct a compact complex manifold $X(T)$ with a ${\mathbb {C}}^2$-action, which compactifies $({\mathbb {C}}^*)^4$ such that the quotient of $({\mathbb {C}}^*)^4$ by the ${\mathbb {C}}^2$-action is biholomorphic to $T$. For a general $T$, we show that $X(T)$ has no non-constant meromorphic functions.
LA - eng
KW - compactification; complex torus
UR - http://eudml.org/doc/115975
ER -

References

top
  1. J.-P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom. 3 (1994), 295-345 Zbl0827.14027MR1257325
  2. C. Gellhaus, Äquivariante Kompaktifizierungen des n , Math. Zeit. 206 (1991), 211-217 Zbl0693.32015MR1091936
  3. R. Hartshorne, Ample subvarieties of algebraic varieties, Vol. 156 (1970), Springer-Verlag, Berlin-Heidelberg-New York Zbl0208.48901MR282977
  4. S. Kosarew, T. Peternell, Formal cohomology, analytic cohomology and non-algebraic manifolds, Compositio Math 74 (1990), 299-325 Zbl0709.32009MR1055698
  5. T. Peternell, M. Schneider, Compactifications of n : A survey, Proc. Symp. Pure Math 52 (1991), 455-466 Zbl0745.32012MR1128563
  6. J.-P. Rosay, W. Rudin, Holomorphic maps from n to n , Trans. Amer. Math. Soc. 310 (1988), 47-86 Zbl0708.58003MR929658

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.