p -adic Abelian Stark conjectures at s = 1

David Solomon[1]

  • [1] King's College London, Department of Mathematics, Strand, London WC2R 2LS (Royaume-Uni)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 2, page 379-417
  • ISSN: 0373-0956

Abstract

top
A p -adic version of Stark’s Conjecture at s = 1 is attributed to J.-P. Serre and stated (faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and work of Rubin) on the complex abelian case, we give a new approach to such a conjecture for real ray-class extensions of totally real number fields. We study the coherence of our p -adic conjecture and then formulate some integral refinements, both alone and in combination with its complex analogue. A ‘Weak Combined Refined’ version is discussed in more detail and proved in two special cases.

How to cite

top

Solomon, David. "$p$-adic Abelian Stark conjectures at $s=1$." Annales de l’institut Fourier 52.2 (2002): 379-417. <http://eudml.org/doc/115984>.

@article{Solomon2002,
abstract = {A $p$-adic version of Stark’s Conjecture at $s=1$ is attributed to J.-P. Serre and stated (faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and work of Rubin) on the complex abelian case, we give a new approach to such a conjecture for real ray-class extensions of totally real number fields. We study the coherence of our $p$-adic conjecture and then formulate some integral refinements, both alone and in combination with its complex analogue. A ‘Weak Combined Refined’ version is discussed in more detail and proved in two special cases.},
affiliation = {King's College London, Department of Mathematics, Strand, London WC2R 2LS (Royaume-Uni)},
author = {Solomon, David},
journal = {Annales de l’institut Fourier},
keywords = {Stark conjecture; $p$-adic; L-function; zeta-function; abelian extension; unit; $S$-unit; regular; special value; totally real field; -adic -function; S-unit},
language = {eng},
number = {2},
pages = {379-417},
publisher = {Association des Annales de l'Institut Fourier},
title = {$p$-adic Abelian Stark conjectures at $s=1$},
url = {http://eudml.org/doc/115984},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Solomon, David
TI - $p$-adic Abelian Stark conjectures at $s=1$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 379
EP - 417
AB - A $p$-adic version of Stark’s Conjecture at $s=1$ is attributed to J.-P. Serre and stated (faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and work of Rubin) on the complex abelian case, we give a new approach to such a conjecture for real ray-class extensions of totally real number fields. We study the coherence of our $p$-adic conjecture and then formulate some integral refinements, both alone and in combination with its complex analogue. A ‘Weak Combined Refined’ version is discussed in more detail and proved in two special cases.
LA - eng
KW - Stark conjecture; $p$-adic; L-function; zeta-function; abelian extension; unit; $S$-unit; regular; special value; totally real field; -adic -function; S-unit
UR - http://eudml.org/doc/115984
ER -

References

top
  1. Y. Amice, J. Fresnel, Fonctions Zêta p-adiques des Corps de Nombres Algébriques Abéliens Réels, Acta Arith. 20 (1972), 353-384 Zbl0217.04303MR337898
  2. Pi. Cassou-Noguès, Valeurs aux Entiers Négatifs des Fonctions Zêta et Fonctions Zêta p-Adiques, Inventiones Mathematicae 51 (1979), 29-59 Zbl0408.12015MR524276
  3. P. Colmez, Résidu en s = 1 des Fonctions Zêta p -adiques, Inventiones Mathematicae 91 (1988), 371-389 Zbl0651.12010MR922806
  4. B.H. Gross, p -adic L -series at s = 0 , J. Fac. Sci. Univ. Tokyo 28 (1981), 979-994 Zbl0507.12010MR656068
  5. B.H. Gross, On the Values of Abelian L -functions at s = 0 , J. Fac. Sci. Univ. Tokyo 35 (1988), 177-197 Zbl0681.12005MR931448
  6. D. Hayes, The Refined p -adic Abelian Stark Conjecture in Function Fields, Inventiones Mathematicae 94 (1988), 505-527 Zbl0666.12009MR969242
  7. N. Katz, Another Look at p -Adic L -Functions for Totally Real Fields, Math. Ann. 255 (1988), 33-43 Zbl0497.14006MR611271
  8. S. Lang, Cyclotomic Fields I and II, 121 (1990), Springer-Verlag, New York Zbl0704.11038MR1029028
  9. C. Popescu, Base Change for Stark-Type Conjectures “Over ” Zbl1074.11062MR1880826
  10. X.-F. Roblot, D. Solomon, Verifying a p -Adic Abelian Stark Conjecture at s = 1 , (2001) 
  11. K. Rubin, A Stark Conjecture “Over Z” for Abelian L -Functions with Multiple Zeros, Annales de l'Institut Fourier 46 (1996), 33-62 Zbl0834.11044MR1385509
  12. J.-P. Serre, Sur le Résidu de la Fonction Zêta p -adique d’un Corps de Nombres, C. R. Acad. Sc. Paris, Série A 287 (1978), 183-188 Zbl0393.12026MR506177
  13. J.-P. Serre, Local Fields, (1979), Springer-Verlag, New York Zbl0423.12016MR554237
  14. T. Shintani, On Evaluation of Zeta Functions of Totally Real Algebraic Number Fields at Non-Positive Integers, J. Fac. Sci. Univ. Tokyo, Sec. 1A 23 (1976), 393-417 Zbl0349.12007MR427231
  15. C. L. Siegel, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad.Wiss Göttingen 3 (1970), 15-56 Zbl0225.10031MR285488
  16. D. Solomon, Galois Relations for Cyclotomic Numbers and p -Units, Journal of Number Theory 46 (1994), 158-178 Zbl0807.11054MR1269250
  17. D. Solomon, Twisted Zeta-Functions and Abelian Stark Conjectures Zbl1032.11051MR1904961
  18. H. Stark, L -Functions at s = 1 , I, Advances in Mathematics 7 (1971), 301-343 Zbl0263.10015MR289429
  19. L. Washington, Introduction to Cyclotomic Fields, 83 (1982), Springer-Verlag, New York Zbl0484.12001MR718674
  20. J. T. Tate, Les Conjectures de Stark sur les Fonctions L d’Artin en s = 0 , (1984), Birkhäuser, Boston Zbl0545.12009MR782485
  21. H. Stark, L -Functions at s = 1 , II, Advances in Mathematics 17 (1975), 60-92 Zbl0316.12007MR382194
  22. H. Stark, L -Functions at s = 1 , III, Advances in Mathematics 22 (1976), 64-84 Zbl0348.12017MR437501
  23. H. Stark, L -Functions at s = 1 , IV, Advances in Mathematics 35 (1980), 197-235 Zbl0475.12018MR563924

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.