-adic Abelian Stark conjectures at
- [1] King's College London, Department of Mathematics, Strand, London WC2R 2LS (Royaume-Uni)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 2, page 379-417
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSolomon, David. "$p$-adic Abelian Stark conjectures at $s=1$." Annales de l’institut Fourier 52.2 (2002): 379-417. <http://eudml.org/doc/115984>.
@article{Solomon2002,
abstract = {A $p$-adic version of Stark’s Conjecture at $s=1$ is attributed to J.-P. Serre and stated
(faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and
work of Rubin) on the complex abelian case, we give a new approach to such a conjecture
for real ray-class extensions of totally real number fields. We study the coherence of
our $p$-adic conjecture and then formulate some integral refinements, both alone and in
combination with its complex analogue. A ‘Weak Combined Refined’ version is discussed
in more detail and proved in two special cases.},
affiliation = {King's College London, Department of Mathematics, Strand, London WC2R 2LS (Royaume-Uni)},
author = {Solomon, David},
journal = {Annales de l’institut Fourier},
keywords = {Stark conjecture; $p$-adic; L-function; zeta-function; abelian extension; unit; $S$-unit; regular; special value; totally real field; -adic -function; S-unit},
language = {eng},
number = {2},
pages = {379-417},
publisher = {Association des Annales de l'Institut Fourier},
title = {$p$-adic Abelian Stark conjectures at $s=1$},
url = {http://eudml.org/doc/115984},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Solomon, David
TI - $p$-adic Abelian Stark conjectures at $s=1$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 379
EP - 417
AB - A $p$-adic version of Stark’s Conjecture at $s=1$ is attributed to J.-P. Serre and stated
(faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and
work of Rubin) on the complex abelian case, we give a new approach to such a conjecture
for real ray-class extensions of totally real number fields. We study the coherence of
our $p$-adic conjecture and then formulate some integral refinements, both alone and in
combination with its complex analogue. A ‘Weak Combined Refined’ version is discussed
in more detail and proved in two special cases.
LA - eng
KW - Stark conjecture; $p$-adic; L-function; zeta-function; abelian extension; unit; $S$-unit; regular; special value; totally real field; -adic -function; S-unit
UR - http://eudml.org/doc/115984
ER -
References
top- Y. Amice, J. Fresnel, Fonctions Zêta p-adiques des Corps de Nombres Algébriques Abéliens Réels, Acta Arith. 20 (1972), 353-384 Zbl0217.04303MR337898
- Pi. Cassou-Noguès, Valeurs aux Entiers Négatifs des Fonctions Zêta et Fonctions Zêta p-Adiques, Inventiones Mathematicae 51 (1979), 29-59 Zbl0408.12015MR524276
- P. Colmez, Résidu en des Fonctions Zêta -adiques, Inventiones Mathematicae 91 (1988), 371-389 Zbl0651.12010MR922806
- B.H. Gross, -adic -series at , J. Fac. Sci. Univ. Tokyo 28 (1981), 979-994 Zbl0507.12010MR656068
- B.H. Gross, On the Values of Abelian -functions at , J. Fac. Sci. Univ. Tokyo 35 (1988), 177-197 Zbl0681.12005MR931448
- D. Hayes, The Refined -adic Abelian Stark Conjecture in Function Fields, Inventiones Mathematicae 94 (1988), 505-527 Zbl0666.12009MR969242
- N. Katz, Another Look at -Adic -Functions for Totally Real Fields, Math. Ann. 255 (1988), 33-43 Zbl0497.14006MR611271
- S. Lang, Cyclotomic Fields I and II, 121 (1990), Springer-Verlag, New York Zbl0704.11038MR1029028
- C. Popescu, Base Change for Stark-Type Conjectures “Over ” Zbl1074.11062MR1880826
- X.-F. Roblot, D. Solomon, Verifying a -Adic Abelian Stark Conjecture at , (2001)
- K. Rubin, A Stark Conjecture “Over Z” for Abelian -Functions with Multiple Zeros, Annales de l'Institut Fourier 46 (1996), 33-62 Zbl0834.11044MR1385509
- J.-P. Serre, Sur le Résidu de la Fonction Zêta -adique d’un Corps de Nombres, C. R. Acad. Sc. Paris, Série A 287 (1978), 183-188 Zbl0393.12026MR506177
- J.-P. Serre, Local Fields, (1979), Springer-Verlag, New York Zbl0423.12016MR554237
- T. Shintani, On Evaluation of Zeta Functions of Totally Real Algebraic Number Fields at Non-Positive Integers, J. Fac. Sci. Univ. Tokyo, Sec. 1A 23 (1976), 393-417 Zbl0349.12007MR427231
- C. L. Siegel, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad.Wiss Göttingen 3 (1970), 15-56 Zbl0225.10031MR285488
- D. Solomon, Galois Relations for Cyclotomic Numbers and -Units, Journal of Number Theory 46 (1994), 158-178 Zbl0807.11054MR1269250
- D. Solomon, Twisted Zeta-Functions and Abelian Stark Conjectures Zbl1032.11051MR1904961
- H. Stark, -Functions at , I, Advances in Mathematics 7 (1971), 301-343 Zbl0263.10015MR289429
- L. Washington, Introduction to Cyclotomic Fields, 83 (1982), Springer-Verlag, New York Zbl0484.12001MR718674
- J. T. Tate, Les Conjectures de Stark sur les Fonctions d’Artin en , (1984), Birkhäuser, Boston Zbl0545.12009MR782485
- H. Stark, -Functions at , II, Advances in Mathematics 17 (1975), 60-92 Zbl0316.12007MR382194
- H. Stark, -Functions at , III, Advances in Mathematics 22 (1976), 64-84 Zbl0348.12017MR437501
- H. Stark, -Functions at , IV, Advances in Mathematics 35 (1980), 197-235 Zbl0475.12018MR563924
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.