A Stark conjecture “over 𝐙 ” for abelian L -functions with multiple zeros

Karl Rubin

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 1, page 33-62
  • ISSN: 0373-0956

Abstract

top
Suppose K / k is an abelian extension of number fields. Stark’s conjecture predicts, under suitable hypotheses, the existence of a global unit ϵ of K such that the special values L ' ( χ , 0 ) for all characters χ of Gal / ( K / k ) can be expressed as simple linear combinations of the logarithms of the different absolute values of ϵ .In this paper we formulate an extension of this conjecture, to attempt to understand the values L ( r ) ( χ , 0 ) when the order of vanishing r may be greater than one. This conjecture no longer predicts the existence of individual special global units, but rather of special elements in an exterior power of the Galois module of global units (or S -units). We also discuss connections between this conjecture, class number formulas, and Euler systems.

How to cite

top

Rubin, Karl. "A Stark conjecture “over ${\bf Z}$” for abelian $L$-functions with multiple zeros." Annales de l'institut Fourier 46.1 (1996): 33-62. <http://eudml.org/doc/75174>.

@article{Rubin1996,
abstract = {Suppose $K/k$ is an abelian extension of number fields. Stark’s conjecture predicts, under suitable hypotheses, the existence of a global unit $\varepsilon $ of $K$ such that the special values $L^\{\prime \}(\chi ,0)$ for all characters $\chi $ of $\{\rm Gal\}/(K/k)$ can be expressed as simple linear combinations of the logarithms of the different absolute values of $\varepsilon $.In this paper we formulate an extension of this conjecture, to attempt to understand the values $L^\{(r)\}(\chi ,0)$ when the order of vanishing $r$ may be greater than one. This conjecture no longer predicts the existence of individual special global units, but rather of special elements in an exterior power of the Galois module of global units (or $S$-units). We also discuss connections between this conjecture, class number formulas, and Euler systems.},
author = {Rubin, Karl},
journal = {Annales de l'institut Fourier},
keywords = {Stark's conjecture; -functions; global units; Euler systems},
language = {eng},
number = {1},
pages = {33-62},
publisher = {Association des Annales de l'Institut Fourier},
title = {A Stark conjecture “over $\{\bf Z\}$” for abelian $L$-functions with multiple zeros},
url = {http://eudml.org/doc/75174},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Rubin, Karl
TI - A Stark conjecture “over ${\bf Z}$” for abelian $L$-functions with multiple zeros
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 1
SP - 33
EP - 62
AB - Suppose $K/k$ is an abelian extension of number fields. Stark’s conjecture predicts, under suitable hypotheses, the existence of a global unit $\varepsilon $ of $K$ such that the special values $L^{\prime }(\chi ,0)$ for all characters $\chi $ of ${\rm Gal}/(K/k)$ can be expressed as simple linear combinations of the logarithms of the different absolute values of $\varepsilon $.In this paper we formulate an extension of this conjecture, to attempt to understand the values $L^{(r)}(\chi ,0)$ when the order of vanishing $r$ may be greater than one. This conjecture no longer predicts the existence of individual special global units, but rather of special elements in an exterior power of the Galois module of global units (or $S$-units). We also discuss connections between this conjecture, class number formulas, and Euler systems.
LA - eng
KW - Stark's conjecture; -functions; global units; Euler systems
UR - http://eudml.org/doc/75174
ER -

References

top
  1. [1] K. BROWN, Cohomology of groups, Grad. Texts in Math., 87, New York, Springer (1982). Zbl0584.20036MR83k:20002
  2. [2] P. DELIGNE, K. RIBET, Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227-286. Zbl0434.12009MR81m:12019
  3. [3] R. GILLARD, Remarques sur les unités cyclotomiques et les unités elliptiques, J. Number Theory, 11 (1979), 21-48. Zbl0405.12008MR80j:12004
  4. [4] B. H. GROSS, On the values of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo, 35 (1988), 177-197. Zbl0681.12005MR89h:11071
  5. [5] M. KRASNER, Sur la représentation exponentielle dans les corps relativement galoisiens de nombers p-adiques, Acta Arith., 3 (1939), 133-173. JFM65.0113.01
  6. [6] J. MASLEY, Solution of the class number 2 problem for cyclotomic fields, Invent. Math., 28 (1975), 243-244. Zbl0288.12005MR51 #5554
  7. [7] B. MAZUR, A. WILES, Class fields of abelian extensions of Q, Invent. Math., 76 (1984), 179-330. Zbl0545.12005MR85m:11069
  8. [8] K. RUBIN, Stark units and Kolyvagin's Euler systems, J. für die reine und angew. Math., 425 (1992), 141-154. Zbl0752.11045MR93d:11117
  9. [9] J. SANDS, Stark's conjecture and abelian L-functions with higher order zeros at s = 0, Advances in Math., 66 (1987), 62-87. Zbl0631.12006MR89g:11110
  10. [10] H. STARK, L-functions at s = 1 I, II, III, IV, Advances in Math., 7 (1971), 301-343, 17 (1975), 60-92, 22 (1976), 64-84, 35 (1980), 197-235. Zbl0475.12018
  11. [11] J. TATE, Les conjectures de Stark sur les fonctions L d'Artin en s = 0, Prog. in Math., 47, Boston, Birkhäuser (1984). Zbl0545.12009
  12. [12] D. S. RIM, An exact sequence in Galois cohomology, Proc. Amer. Math. Soc., 16 (1965), 837-840. Zbl0166.30604MR31 #3480
  13. [13] R. SWAN, K-theory of finite groups and orders, Lecture notes in Math., 149, New York, Springer (1970). Zbl0205.32105MR46 #7310

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.