A Stark conjecture “over ” for abelian -functions with multiple zeros
Annales de l'institut Fourier (1996)
- Volume: 46, Issue: 1, page 33-62
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRubin, Karl. "A Stark conjecture “over ${\bf Z}$” for abelian $L$-functions with multiple zeros." Annales de l'institut Fourier 46.1 (1996): 33-62. <http://eudml.org/doc/75174>.
@article{Rubin1996,
abstract = {Suppose $K/k$ is an abelian extension of number fields. Stark’s conjecture predicts, under suitable hypotheses, the existence of a global unit $\varepsilon $ of $K$ such that the special values $L^\{\prime \}(\chi ,0)$ for all characters $\chi $ of $\{\rm Gal\}/(K/k)$ can be expressed as simple linear combinations of the logarithms of the different absolute values of $\varepsilon $.In this paper we formulate an extension of this conjecture, to attempt to understand the values $L^\{(r)\}(\chi ,0)$ when the order of vanishing $r$ may be greater than one. This conjecture no longer predicts the existence of individual special global units, but rather of special elements in an exterior power of the Galois module of global units (or $S$-units). We also discuss connections between this conjecture, class number formulas, and Euler systems.},
author = {Rubin, Karl},
journal = {Annales de l'institut Fourier},
keywords = {Stark's conjecture; -functions; global units; Euler systems},
language = {eng},
number = {1},
pages = {33-62},
publisher = {Association des Annales de l'Institut Fourier},
title = {A Stark conjecture “over $\{\bf Z\}$” for abelian $L$-functions with multiple zeros},
url = {http://eudml.org/doc/75174},
volume = {46},
year = {1996},
}
TY - JOUR
AU - Rubin, Karl
TI - A Stark conjecture “over ${\bf Z}$” for abelian $L$-functions with multiple zeros
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 1
SP - 33
EP - 62
AB - Suppose $K/k$ is an abelian extension of number fields. Stark’s conjecture predicts, under suitable hypotheses, the existence of a global unit $\varepsilon $ of $K$ such that the special values $L^{\prime }(\chi ,0)$ for all characters $\chi $ of ${\rm Gal}/(K/k)$ can be expressed as simple linear combinations of the logarithms of the different absolute values of $\varepsilon $.In this paper we formulate an extension of this conjecture, to attempt to understand the values $L^{(r)}(\chi ,0)$ when the order of vanishing $r$ may be greater than one. This conjecture no longer predicts the existence of individual special global units, but rather of special elements in an exterior power of the Galois module of global units (or $S$-units). We also discuss connections between this conjecture, class number formulas, and Euler systems.
LA - eng
KW - Stark's conjecture; -functions; global units; Euler systems
UR - http://eudml.org/doc/75174
ER -
References
top- [1] K. BROWN, Cohomology of groups, Grad. Texts in Math., 87, New York, Springer (1982). Zbl0584.20036MR83k:20002
- [2] P. DELIGNE, K. RIBET, Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227-286. Zbl0434.12009MR81m:12019
- [3] R. GILLARD, Remarques sur les unités cyclotomiques et les unités elliptiques, J. Number Theory, 11 (1979), 21-48. Zbl0405.12008MR80j:12004
- [4] B. H. GROSS, On the values of abelian L-functions at s = 0, J. Fac. Sci. Univ. Tokyo, 35 (1988), 177-197. Zbl0681.12005MR89h:11071
- [5] M. KRASNER, Sur la représentation exponentielle dans les corps relativement galoisiens de nombers p-adiques, Acta Arith., 3 (1939), 133-173. JFM65.0113.01
- [6] J. MASLEY, Solution of the class number 2 problem for cyclotomic fields, Invent. Math., 28 (1975), 243-244. Zbl0288.12005MR51 #5554
- [7] B. MAZUR, A. WILES, Class fields of abelian extensions of Q, Invent. Math., 76 (1984), 179-330. Zbl0545.12005MR85m:11069
- [8] K. RUBIN, Stark units and Kolyvagin's Euler systems, J. für die reine und angew. Math., 425 (1992), 141-154. Zbl0752.11045MR93d:11117
- [9] J. SANDS, Stark's conjecture and abelian L-functions with higher order zeros at s = 0, Advances in Math., 66 (1987), 62-87. Zbl0631.12006MR89g:11110
- [10] H. STARK, L-functions at s = 1 I, II, III, IV, Advances in Math., 7 (1971), 301-343, 17 (1975), 60-92, 22 (1976), 64-84, 35 (1980), 197-235. Zbl0475.12018
- [11] J. TATE, Les conjectures de Stark sur les fonctions L d'Artin en s = 0, Prog. in Math., 47, Boston, Birkhäuser (1984). Zbl0545.12009
- [12] D. S. RIM, An exact sequence in Galois cohomology, Proc. Amer. Math. Soc., 16 (1965), 837-840. Zbl0166.30604MR31 #3480
- [13] R. SWAN, K-theory of finite groups and orders, Lecture notes in Math., 149, New York, Springer (1970). Zbl0205.32105MR46 #7310
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.