Geometry of compactifications of locally symmetric spaces

Lizhen Ji[1]; Robert Macpherson[2]

  • [1] University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1003 (USA)
  • [2] Institute for Advanced Study, School of Mathematics, Princeton NJ 08540 (USA)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 2, page 457-559
  • ISSN: 0373-0956

Abstract

top
For a locally symmetric space M , we define a compactification M M ( ) which we call the “geodesic compactification”. It is constructed by adding limit points in M ( ) to certain geodesics in M . The geodesic compactification arises in other contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian manifold give M ( ) for locally symmetric spaces. Moreover, M ( ) has a natural group theoretic construction using the Tits building. The geodesic compactification plays two fundamental roles in the harmonic analysis of the locally symmetric space:1) it is the minimal Martin compactification for negative eigenvalues of the Laplacian, and 2) it can be used to parameterize the eigenfunctions of the Laplacian in continuous spectrum on L 2 .

How to cite

top

Ji, Lizhen, and Macpherson, Robert. "Geometry of compactifications of locally symmetric spaces." Annales de l’institut Fourier 52.2 (2002): 457-559. <http://eudml.org/doc/115986>.

@article{Ji2002,
abstract = {For a locally symmetric space $M$, we define a compactification $M\cup M(\infty )$ which we call the “geodesic compactification”. It is constructed by adding limit points in $M(\infty )$ to certain geodesics in $M$. The geodesic compactification arises in other contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian manifold give $M(\infty )$ for locally symmetric spaces. Moreover, $M(\infty )$ has a natural group theoretic construction using the Tits building. The geodesic compactification plays two fundamental roles in the harmonic analysis of the locally symmetric space:1) it is the minimal Martin compactification for negative eigenvalues of the Laplacian, and 2) it can be used to parameterize the eigenfunctions of the Laplacian in continuous spectrum on $L_2$.},
affiliation = {University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1003 (USA); Institute for Advanced Study, School of Mathematics, Princeton NJ 08540 (USA)},
author = {Ji, Lizhen, Macpherson, Robert},
journal = {Annales de l’institut Fourier},
keywords = {compactifications; locally symmetric spaces; geodesics; arithmetic groups},
language = {eng},
number = {2},
pages = {457-559},
publisher = {Association des Annales de l'Institut Fourier},
title = {Geometry of compactifications of locally symmetric spaces},
url = {http://eudml.org/doc/115986},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Ji, Lizhen
AU - Macpherson, Robert
TI - Geometry of compactifications of locally symmetric spaces
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 457
EP - 559
AB - For a locally symmetric space $M$, we define a compactification $M\cup M(\infty )$ which we call the “geodesic compactification”. It is constructed by adding limit points in $M(\infty )$ to certain geodesics in $M$. The geodesic compactification arises in other contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian manifold give $M(\infty )$ for locally symmetric spaces. Moreover, $M(\infty )$ has a natural group theoretic construction using the Tits building. The geodesic compactification plays two fundamental roles in the harmonic analysis of the locally symmetric space:1) it is the minimal Martin compactification for negative eigenvalues of the Laplacian, and 2) it can be used to parameterize the eigenfunctions of the Laplacian in continuous spectrum on $L_2$.
LA - eng
KW - compactifications; locally symmetric spaces; geodesics; arithmetic groups
UR - http://eudml.org/doc/115986
ER -

References

top
  1. J. Arthur, A Trace Formula for Reductive Groups I, Duke Math. J. 45 (1978), 911-952 Zbl0499.10032MR518111
  2. J. Arthur, Eisenstein Series and the Trace Formula, Part 1, Proc. Symp. Pure Math. 33 (1979), 253-274 Zbl0431.22016MR546601
  3. W. Ballmann, M. Gromov, V. Schroeder, Manifolds of Nonpositive Curvature, vol. 61 (1985), Birkhäuser, Boston Zbl0591.53001MR823981
  4. A. Borel, Introduction aux groupes arithmétiques, (1969), Hermann, Paris Zbl0186.33202
  5. A. Borel, Some Metric Properties of Arithmetic Quotients of Symmetric Spaces and an Extension Theorem, J. Diff. Geom. 6 (1972), 543-560 Zbl0249.32018MR338456
  6. A. Borel, Linear Algebraic Groups, Proc. Symp. Pure Math. 9 (1969), 3-19 Zbl0205.50503MR204532
  7. A. Borel, Reduction theory for arithmetic groups, Proc. Symp. Pure Math. 9 (1969), 20-25 Zbl0213.47201MR204533
  8. A. Borel, Harish-Chandra, Arithmetic Subgroups of Algebraic Groups, Ann. of Math. 75 (1962), 485-535 Zbl0107.14804
  9. A. Borel, L. Ji, Compactification of Locally Symmetric Spaces, (2000) 
  10. A. Borel, J.-P. Serre, Corners and Arithmetic Groups, Comment. Math. Helv. 48 (1973), 436-491 Zbl0274.22011
  11. A. Borel, T. Tits, Groupes réductifs, Publ. Math. IHES 27 (1965), 55-151 Zbl0145.17402
  12. M. Brelot, Lectures on Potential Theory, Tata Institute of Fundamental Research (1967) 
  13. H. Donnelly, P. Li, Pure Point Spectrum and Negative Curvature for Noncompact Manifolds, Duke Math. J. 46 (1979), 497-503 Zbl0416.58025MR544241
  14. J. Franke, Harmonic Analysis in Weighted L 2 -Spaces, Ann. Sci. École Norm. Sup. 31 (1998), 181-279 Zbl0938.11026MR1603257
  15. M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-74 Zbl37.0348.02
  16. H. Furstenberg, A Poisson Formula for Semi-simple Lie Groups, Ann. Math. 72 (1963), 335-386 Zbl0192.12704MR146298
  17. H. Garland, M.S. Raghunathan, Fundamental Domains for Lattices in ( ) -Rank 1 Semi-simple Lie Groups, Ann. of Math. 92 (1970), 279-326 Zbl0206.03603MR267041
  18. M. Goresky, G. Harder, R. MacPherson, Weighted Cohomology, Invent. Math. 116 (1994), 139-213 Zbl0849.11047MR1253192
  19. M. Gromov, Structure métriques pour les variétés riemanniennes, (1981), CEDIC, Paris Zbl0509.53034MR682063
  20. M. Gromov, Groups of Polynomial Growth and Expanding Groups, IHES 53 (1981), 53-73 Zbl0474.20018MR623534
  21. M. Gromov, Asymptotic Invariants of Infinite Groups, Geometric Group Theory (Sussex, 1991) vol. 2 (1993), 1-295, Cambridge Univ. Press Zbl0841.20039
  22. D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, 224 (1977), Springer Verlag, New York Zbl0361.35003MR473443
  23. V. Guillemin, Sojourn ptmr and Asymptotic Properties of the Scattering matrix, RIMS Kyoto Univ. 12 (1977), 69-88 Zbl0381.35064MR448453
  24. Y. Guivarch, L. Ji, J.C. Taylor, Compactifications of Symmetric Spaces, vol. 156 (1998), Birkhäuser, Boston Zbl1053.31006MR1633171
  25. M. Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques, Collected Works 2, 729-775 Zbl29.0522.01
  26. T. Hattori, Geometry of Quotient Spaces of SO ( 3 ) SL ( 3 , ) by Congruence Subgroups, Math. Ann. 293 (1992), 443-467 Zbl0769.53033MR1170519
  27. T. Hattori, [unknown], J. Math. Soc. Japan 47 (1995), 193-225 Zbl0844.53041MR1317280
  28. M. Harris, S. Zucker, Boundary Cohomology of Shimura Varieties II. Hodge Theory at the Boundary, Invent. Math. 116 (1994), 243-307 Zbl0860.11031MR1253194
  29. D. Hejhal, The Selberg Trace Formula for PSL ( 2 , ) II, vol. 1001 (1983), Springer-Verlag Zbl0543.10020MR711197
  30. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, vol. 80 (1978), Academic Press Zbl0451.53038MR514561
  31. Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, vol. 62 (1968), Springer-Verlag Zbl0186.04702MR232893
  32. L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Geometric Complex Analysis (1996), 297-308 Zbl0936.53033
  33. L. Ji, Metric Compactifications of Locally Symmetric Spaces, Intern. J. of Math. 9 (1998), 465-491 Zbl0929.32017MR1635185
  34. L. Ji, M. Zworski, Scattering matrices and scattering geodesics, Ann. Sci. École Norm. Sup. 34 (2001), 441-469 Zbl1026.53026MR1839581
  35. F.I. Karpelevic, The Geometry of Geodesics and the Eigenfunctions of the Beltrami-Laplace Operator on Symmetric Spaces, Trans. Moscow Math. Soc. 14 (1965), 51-199 Zbl0164.22202MR231321
  36. J. Keller, Wave Propagation, ICM 1994 in Zürich (1994), 106-119, Birkhäuser, Switzerland Zbl0849.35004
  37. J.L. Kelly, General Topology, vol. 27 (1955), Springer Zbl0306.54002
  38. A. Koranyi, J.C. Taylor, Fine Convergence and Parabolic Convergence for the Helmholtz Equation and the Heat Equation, Illinois J. Math. 27 (1983), 77-93 Zbl0488.31004MR684542
  39. K. Kuratowski, Topology, (1966), Academic Press Zbl0158.40802MR217751
  40. R. Langlands, On the Functional Equations Satisfied by Eisenstein Series, vol. 544 (1976), Springer-Verlag Zbl0332.10018MR579181
  41. E. Leuzinger, Geodesic Rays in Locally Symmetric Spaces, Diff. Geom. Appl. 6 (1996), 55-65 Zbl0846.53032MR1384879
  42. R.S. Martin, Minimal Positive Harmonic Functions, Trans. Amer. Math. Soc. 49 (1941), 137-172 Zbl0025.33302MR3919
  43. R. Melrose, Geometric Scattering Theory, (1995), Cambridge University Press, New York Zbl0849.58071MR1350074
  44. C. Moeglin, J.L. Waldspurger, Spectral Decomposition and Eisenstein Series, (1995), Cambridge University Press Zbl0846.11032MR1361168
  45. W. Müller, The Trace Class Conjecture in the Theory of Automorphic Forms, Ann. of Math. 130 (1989), 473-529 Zbl0701.11019MR1025165
  46. M.S. Osborne, G. Warner, The Selberg Trace Formula II: Partition, Reduction, Truncation, Pacific J. Math. 106 (1983), 307-496 Zbl0515.22013MR699915
  47. M.S. Osborne, G. Warner, The Theory of Eisenstein Systems, vol. 99 (1981), Academic Press Zbl0489.43009MR643242
  48. L. Saper, Tilings and Finite Energy Retractions of Locally Symmetric Spaces, Comment. Math. Helv. 72 (1997), 167-202 Zbl0890.22003MR1470087
  49. I. Satake, On Representations and Compactifications of Symmetric Spaces, Ann. of Math. 71 (1960), 77-110 Zbl0094.34603MR118775
  50. I. Satake, On Compactifications of the Quotient Spaces for Arithmetically Defined Discontinuous Groups, Ann. of Math. 72 (1960), 555-580 Zbl0146.04701MR170356
  51. A. Selberg, Recent Developments in the Theory of Discontinuous Groups of Motions of Symmetric Spaces, vol. 118 (1968), 99-120, Springer-Verlag Zbl0197.18002
  52. A. Selberg, Harmonic Analysis and Discontinuous Groups in Weakly Riemannian Symmetric Spaces with Applications to Dirichlet Series, J. Ind. Math. Soc. 20 (1956), 47-87 Zbl0072.08201MR88511
  53. C.L. Siegel, Symplectic Geometry, (1964), Academic Press Zbl0138.31403MR164063
  54. D. Sullivan, Disjoint Spheres, Approximation by Imaginary Quadratic Numbers, and the Logarithm Law for Geodesics, Acta Math. 149 (1982), 215-236 Zbl0517.58028MR688349
  55. D. Sullivan, Related Aspects of Positivity in Riemannian geometry, J. Diff. Geom. 25 (1987), 327-351 Zbl0615.53029MR882827
  56. J. Tits, On Buildings and Their Applications, Proc. ICM, Vancouver (1974), 209-220 Zbl0336.57009
  57. J. Tits, Buildings of Spherical Type and BN-Pairs, vol. 386 (1974), Springer-Verlag Zbl0295.20047MR470099
  58. C. Wilcox, Scattering States and Wave Operators in the Abstract Theory of Scattering, J. Func. Anal. 12 (1973), 257-274 Zbl0248.47006MR344912
  59. R. Zimmer, Ergodic Theory and Semisimple Groups, (1984), Birkhäuser, Boston Zbl0571.58015MR776417
  60. S. Zucker, L 2 Cohomology of Warped Products and Arithmetic Groups, Invent. Math. 70 (1982), 169-218 Zbl0508.20020MR684171
  61. S. Zucker, Satake Compactifications, Comment. Math. Helv. 58 (1983), 312-343 Zbl0565.22009MR705539

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.