Geometry of compactifications of locally symmetric spaces
Lizhen Ji[1]; Robert Macpherson[2]
- [1] University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1003 (USA)
- [2] Institute for Advanced Study, School of Mathematics, Princeton NJ 08540 (USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 2, page 457-559
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJi, Lizhen, and Macpherson, Robert. "Geometry of compactifications of locally symmetric spaces." Annales de l’institut Fourier 52.2 (2002): 457-559. <http://eudml.org/doc/115986>.
@article{Ji2002,
abstract = {For a locally symmetric space $M$, we define a compactification $M\cup M(\infty )$ which
we call the “geodesic compactification”. It is constructed by adding limit points in
$M(\infty )$ to certain geodesics in $M$. The geodesic compactification arises in other
contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian
manifold give $M(\infty )$ for locally symmetric spaces. Moreover, $M(\infty )$ has a
natural group theoretic construction using the Tits building. The geodesic
compactification plays two fundamental roles in the harmonic analysis of the locally
symmetric space:1) it is the minimal Martin compactification for negative eigenvalues of
the Laplacian, and 2) it can be used to parameterize the eigenfunctions of the Laplacian
in continuous spectrum on $L_2$.},
affiliation = {University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1003 (USA); Institute for Advanced Study, School of Mathematics, Princeton NJ 08540 (USA)},
author = {Ji, Lizhen, Macpherson, Robert},
journal = {Annales de l’institut Fourier},
keywords = {compactifications; locally symmetric spaces; geodesics; arithmetic groups},
language = {eng},
number = {2},
pages = {457-559},
publisher = {Association des Annales de l'Institut Fourier},
title = {Geometry of compactifications of locally symmetric spaces},
url = {http://eudml.org/doc/115986},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Ji, Lizhen
AU - Macpherson, Robert
TI - Geometry of compactifications of locally symmetric spaces
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 2
SP - 457
EP - 559
AB - For a locally symmetric space $M$, we define a compactification $M\cup M(\infty )$ which
we call the “geodesic compactification”. It is constructed by adding limit points in
$M(\infty )$ to certain geodesics in $M$. The geodesic compactification arises in other
contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian
manifold give $M(\infty )$ for locally symmetric spaces. Moreover, $M(\infty )$ has a
natural group theoretic construction using the Tits building. The geodesic
compactification plays two fundamental roles in the harmonic analysis of the locally
symmetric space:1) it is the minimal Martin compactification for negative eigenvalues of
the Laplacian, and 2) it can be used to parameterize the eigenfunctions of the Laplacian
in continuous spectrum on $L_2$.
LA - eng
KW - compactifications; locally symmetric spaces; geodesics; arithmetic groups
UR - http://eudml.org/doc/115986
ER -
References
top- J. Arthur, A Trace Formula for Reductive Groups I, Duke Math. J. 45 (1978), 911-952 Zbl0499.10032MR518111
- J. Arthur, Eisenstein Series and the Trace Formula, Part 1, Proc. Symp. Pure Math. 33 (1979), 253-274 Zbl0431.22016MR546601
- W. Ballmann, M. Gromov, V. Schroeder, Manifolds of Nonpositive Curvature, vol. 61 (1985), Birkhäuser, Boston Zbl0591.53001MR823981
- A. Borel, Introduction aux groupes arithmétiques, (1969), Hermann, Paris Zbl0186.33202
- A. Borel, Some Metric Properties of Arithmetic Quotients of Symmetric Spaces and an Extension Theorem, J. Diff. Geom. 6 (1972), 543-560 Zbl0249.32018MR338456
- A. Borel, Linear Algebraic Groups, Proc. Symp. Pure Math. 9 (1969), 3-19 Zbl0205.50503MR204532
- A. Borel, Reduction theory for arithmetic groups, Proc. Symp. Pure Math. 9 (1969), 20-25 Zbl0213.47201MR204533
- A. Borel, Harish-Chandra, Arithmetic Subgroups of Algebraic Groups, Ann. of Math. 75 (1962), 485-535 Zbl0107.14804
- A. Borel, L. Ji, Compactification of Locally Symmetric Spaces, (2000)
- A. Borel, J.-P. Serre, Corners and Arithmetic Groups, Comment. Math. Helv. 48 (1973), 436-491 Zbl0274.22011
- A. Borel, T. Tits, Groupes réductifs, Publ. Math. IHES 27 (1965), 55-151 Zbl0145.17402
- M. Brelot, Lectures on Potential Theory, Tata Institute of Fundamental Research (1967)
- H. Donnelly, P. Li, Pure Point Spectrum and Negative Curvature for Noncompact Manifolds, Duke Math. J. 46 (1979), 497-503 Zbl0416.58025MR544241
- J. Franke, Harmonic Analysis in Weighted -Spaces, Ann. Sci. École Norm. Sup. 31 (1998), 181-279 Zbl0938.11026MR1603257
- M. Fréchet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-74 Zbl37.0348.02
- H. Furstenberg, A Poisson Formula for Semi-simple Lie Groups, Ann. Math. 72 (1963), 335-386 Zbl0192.12704MR146298
- H. Garland, M.S. Raghunathan, Fundamental Domains for Lattices in -Rank 1 Semi-simple Lie Groups, Ann. of Math. 92 (1970), 279-326 Zbl0206.03603MR267041
- M. Goresky, G. Harder, R. MacPherson, Weighted Cohomology, Invent. Math. 116 (1994), 139-213 Zbl0849.11047MR1253192
- M. Gromov, Structure métriques pour les variétés riemanniennes, (1981), CEDIC, Paris Zbl0509.53034MR682063
- M. Gromov, Groups of Polynomial Growth and Expanding Groups, IHES 53 (1981), 53-73 Zbl0474.20018MR623534
- M. Gromov, Asymptotic Invariants of Infinite Groups, Geometric Group Theory (Sussex, 1991) vol. 2 (1993), 1-295, Cambridge Univ. Press Zbl0841.20039
- D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, 224 (1977), Springer Verlag, New York Zbl0361.35003MR473443
- V. Guillemin, Sojourn ptmr and Asymptotic Properties of the Scattering matrix, RIMS Kyoto Univ. 12 (1977), 69-88 Zbl0381.35064MR448453
- Y. Guivarch, L. Ji, J.C. Taylor, Compactifications of Symmetric Spaces, vol. 156 (1998), Birkhäuser, Boston Zbl1053.31006MR1633171
- M. Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques, Collected Works 2, 729-775 Zbl29.0522.01
- T. Hattori, Geometry of Quotient Spaces of by Congruence Subgroups, Math. Ann. 293 (1992), 443-467 Zbl0769.53033MR1170519
- T. Hattori, [unknown], J. Math. Soc. Japan 47 (1995), 193-225 Zbl0844.53041MR1317280
- M. Harris, S. Zucker, Boundary Cohomology of Shimura Varieties II. Hodge Theory at the Boundary, Invent. Math. 116 (1994), 243-307 Zbl0860.11031MR1253194
- D. Hejhal, The Selberg Trace Formula for II, vol. 1001 (1983), Springer-Verlag Zbl0543.10020MR711197
- S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, vol. 80 (1978), Academic Press Zbl0451.53038MR514561
- Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, vol. 62 (1968), Springer-Verlag Zbl0186.04702MR232893
- L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Geometric Complex Analysis (1996), 297-308 Zbl0936.53033
- L. Ji, Metric Compactifications of Locally Symmetric Spaces, Intern. J. of Math. 9 (1998), 465-491 Zbl0929.32017MR1635185
- L. Ji, M. Zworski, Scattering matrices and scattering geodesics, Ann. Sci. École Norm. Sup. 34 (2001), 441-469 Zbl1026.53026MR1839581
- F.I. Karpelevic, The Geometry of Geodesics and the Eigenfunctions of the Beltrami-Laplace Operator on Symmetric Spaces, Trans. Moscow Math. Soc. 14 (1965), 51-199 Zbl0164.22202MR231321
- J. Keller, Wave Propagation, ICM 1994 in Zürich (1994), 106-119, Birkhäuser, Switzerland Zbl0849.35004
- J.L. Kelly, General Topology, vol. 27 (1955), Springer Zbl0306.54002
- A. Koranyi, J.C. Taylor, Fine Convergence and Parabolic Convergence for the Helmholtz Equation and the Heat Equation, Illinois J. Math. 27 (1983), 77-93 Zbl0488.31004MR684542
- K. Kuratowski, Topology, (1966), Academic Press Zbl0158.40802MR217751
- R. Langlands, On the Functional Equations Satisfied by Eisenstein Series, vol. 544 (1976), Springer-Verlag Zbl0332.10018MR579181
- E. Leuzinger, Geodesic Rays in Locally Symmetric Spaces, Diff. Geom. Appl. 6 (1996), 55-65 Zbl0846.53032MR1384879
- R.S. Martin, Minimal Positive Harmonic Functions, Trans. Amer. Math. Soc. 49 (1941), 137-172 Zbl0025.33302MR3919
- R. Melrose, Geometric Scattering Theory, (1995), Cambridge University Press, New York Zbl0849.58071MR1350074
- C. Moeglin, J.L. Waldspurger, Spectral Decomposition and Eisenstein Series, (1995), Cambridge University Press Zbl0846.11032MR1361168
- W. Müller, The Trace Class Conjecture in the Theory of Automorphic Forms, Ann. of Math. 130 (1989), 473-529 Zbl0701.11019MR1025165
- M.S. Osborne, G. Warner, The Selberg Trace Formula II: Partition, Reduction, Truncation, Pacific J. Math. 106 (1983), 307-496 Zbl0515.22013MR699915
- M.S. Osborne, G. Warner, The Theory of Eisenstein Systems, vol. 99 (1981), Academic Press Zbl0489.43009MR643242
- L. Saper, Tilings and Finite Energy Retractions of Locally Symmetric Spaces, Comment. Math. Helv. 72 (1997), 167-202 Zbl0890.22003MR1470087
- I. Satake, On Representations and Compactifications of Symmetric Spaces, Ann. of Math. 71 (1960), 77-110 Zbl0094.34603MR118775
- I. Satake, On Compactifications of the Quotient Spaces for Arithmetically Defined Discontinuous Groups, Ann. of Math. 72 (1960), 555-580 Zbl0146.04701MR170356
- A. Selberg, Recent Developments in the Theory of Discontinuous Groups of Motions of Symmetric Spaces, vol. 118 (1968), 99-120, Springer-Verlag Zbl0197.18002
- A. Selberg, Harmonic Analysis and Discontinuous Groups in Weakly Riemannian Symmetric Spaces with Applications to Dirichlet Series, J. Ind. Math. Soc. 20 (1956), 47-87 Zbl0072.08201MR88511
- C.L. Siegel, Symplectic Geometry, (1964), Academic Press Zbl0138.31403MR164063
- D. Sullivan, Disjoint Spheres, Approximation by Imaginary Quadratic Numbers, and the Logarithm Law for Geodesics, Acta Math. 149 (1982), 215-236 Zbl0517.58028MR688349
- D. Sullivan, Related Aspects of Positivity in Riemannian geometry, J. Diff. Geom. 25 (1987), 327-351 Zbl0615.53029MR882827
- J. Tits, On Buildings and Their Applications, Proc. ICM, Vancouver (1974), 209-220 Zbl0336.57009
- J. Tits, Buildings of Spherical Type and BN-Pairs, vol. 386 (1974), Springer-Verlag Zbl0295.20047MR470099
- C. Wilcox, Scattering States and Wave Operators in the Abstract Theory of Scattering, J. Func. Anal. 12 (1973), 257-274 Zbl0248.47006MR344912
- R. Zimmer, Ergodic Theory and Semisimple Groups, (1984), Birkhäuser, Boston Zbl0571.58015MR776417
- S. Zucker, Cohomology of Warped Products and Arithmetic Groups, Invent. Math. 70 (1982), 169-218 Zbl0508.20020MR684171
- S. Zucker, Satake Compactifications, Comment. Math. Helv. 58 (1983), 312-343 Zbl0565.22009MR705539
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.