Scattering matrices and scattering geodesics of locally symmetric spaces
- [1] University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1003 (USA)
Annales scientifiques de l'École Normale Supérieure (2001)
- Volume: 34, Issue: 3, page 441-469
- ISSN: 0012-9593
Access Full Article
topHow to cite
topJi, Lizhen, and Zworski, Maciej. "Scattering matrices and scattering geodesics of locally symmetric spaces." Annales scientifiques de l'École Normale Supérieure 34.3 (2001): 441-469. <http://eudml.org/doc/82547>.
@article{Ji2001,
affiliation = {University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1003 (USA)},
author = {Ji, Lizhen, Zworski, Maciej},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {locally symmetric space; scattering matrices; scattering geodesics; sojourn time},
language = {eng},
number = {3},
pages = {441-469},
publisher = {Elsevier},
title = {Scattering matrices and scattering geodesics of locally symmetric spaces},
url = {http://eudml.org/doc/82547},
volume = {34},
year = {2001},
}
TY - JOUR
AU - Ji, Lizhen
AU - Zworski, Maciej
TI - Scattering matrices and scattering geodesics of locally symmetric spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 3
SP - 441
EP - 469
LA - eng
KW - locally symmetric space; scattering matrices; scattering geodesics; sojourn time
UR - http://eudml.org/doc/82547
ER -
References
top- [1] Borel A., Introduction aux groupes arithmétiques, Hermann, Paris, 1969. Zbl0186.33202MR244260
- [2] Borel A., Linear algebraic groups, in: Proc. of Symp. in Pure Math., Vol. 9, pp. 3–19. Zbl0205.50503
- [3] Borel A. Reduction theory for arithmetic subgroups, in: Proc. of Symp. in Pure Math., Vol. 9, pp. 20–25. Zbl0213.47201
- [4] Borel A., Serre J.-P., Corners and arithmetic groups, Comment. Math. Helv.48 (1973) 436-491. Zbl0274.22011MR387495
- [5] Borel A., Tits J., Groupes réductifs, I.H.E.S27 (1965) 55-150. Zbl0145.17402MR207712
- [6] Duistermaat J., Guillemin V., The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math.29 (1975) 39-79. Zbl0307.35071MR405514
- [7] Freitag E., Hilbert Modular Forms, Springer-Verlag, 1990. Zbl0702.11029MR1050763
- [8] Gelfand I.M., Piatetski-Shapiro I.I., Unitary representations in homogeneous spaces with discrete stationary groups, Soviet Math. Dokl.3 (1962) 1528-1531. Zbl0119.27002
- [9] Guillemin V., Sojourn times and asymptotic properties of the scattering matrix, Publ. RIMS, Kyoto Univ.12 (1977) 69-88, (Suppl.). Zbl0381.35064MR448453
- [10] Guillemin V., Notes on scattering theory, MIT, 1976, unpublished notes.
- [11] Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, Lect. Notes in Math., 62, 1968. Zbl0186.04702
- [12] Hörmander L., Fourier integral operators I, Acta Math.127 (1971) 79-183. Zbl0212.46601MR388463
- [13] Hörmander L., The Analysis of Linear Partial Differential Operators, Vol. I, Springer-Verlag, Berlin, 1983. Zbl0521.35002
- [14] Hörmander L., The Analysis of Linear Partial Differential Operators, Vol. IV, Springer-Verlag, Berlin, 1985. Zbl0601.35001
- [15] Ji L., The Weyl upper bound on the discrete spectrum of locally symmetric spaces, J.D.G.51 (1999) 97-147. Zbl1036.58028MR1703605
- [16] Ji L., McPherson R., Geometry of compactifications of locally symmetric spaces, preprint, 1997.
- [17] Kuznecov V.N., Petersson's conjecture for cusp forms of weight 0 and Linnik's conjecture: sums of Kloosterman sums, Math. USSR Sbornik39 (1981). Zbl0461.10017
- [18] Langlands R., On the Functional Equations Satisfied by Eisenstein Series, Lect. Notes in Math., 544, 1976. Zbl0332.10018MR579181
- [19] Langlands R., Eisenstein series, the trace formula, and the modern theory of automorphic forms, in: Number Theory, Trace Formula and Discrete Groups, Academic Press, Boston, MA, 1989, pp. 125-155. Zbl0671.10025MR993313
- [20] Lax P., Phillips R., Scattering Theory for Automorphic Functions, Princeton University Press, 1978. Zbl0362.10022
- [21] Müller W., The trace class conjecture in the theory of automorphic forms, Ann. of Math.130 (1989) 473-529. Zbl0701.11019MR1025165
- [22] Petkov V., Stoyanov L., Geometry of Reflecting Rays and Inverse Spectral Problems, Wiley, 1992. Zbl0761.35077MR1172998
- [23] Saper L., Tilings and finite energy retractions of locally symmetric spaces, Comment. Math. Helv.72 (1997) 167-202. Zbl0890.22003MR1470087
- [24] Selberg A., On discontinuous groups in higher dimensional symmetric spaces, in: Contributions to Function Theory, Tata Inst. of Fund. Res, Bombay, 1960. Zbl0201.36603MR130324
- [25] Zelditch S., Kuznecov sum formulæ and Szegö limit formulæ on manifolds, Comm. P.D.E.17 (1992) 221-260. Zbl0749.58062MR1151262
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.