Scattering matrices and scattering geodesics of locally symmetric spaces

Lizhen Ji[1]; Maciej Zworski

  • [1] University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1003 (USA)

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 3, page 441-469
  • ISSN: 0012-9593

How to cite

top

Ji, Lizhen, and Zworski, Maciej. "Scattering matrices and scattering geodesics of locally symmetric spaces." Annales scientifiques de l'École Normale Supérieure 34.3 (2001): 441-469. <http://eudml.org/doc/82547>.

@article{Ji2001,
affiliation = {University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1003 (USA)},
author = {Ji, Lizhen, Zworski, Maciej},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {locally symmetric space; scattering matrices; scattering geodesics; sojourn time},
language = {eng},
number = {3},
pages = {441-469},
publisher = {Elsevier},
title = {Scattering matrices and scattering geodesics of locally symmetric spaces},
url = {http://eudml.org/doc/82547},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Ji, Lizhen
AU - Zworski, Maciej
TI - Scattering matrices and scattering geodesics of locally symmetric spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 3
SP - 441
EP - 469
LA - eng
KW - locally symmetric space; scattering matrices; scattering geodesics; sojourn time
UR - http://eudml.org/doc/82547
ER -

References

top
  1. [1] Borel A., Introduction aux groupes arithmétiques, Hermann, Paris, 1969. Zbl0186.33202MR244260
  2. [2] Borel A., Linear algebraic groups, in: Proc. of Symp. in Pure Math., Vol. 9, pp. 3–19. Zbl0205.50503
  3. [3] Borel A. Reduction theory for arithmetic subgroups, in: Proc. of Symp. in Pure Math., Vol. 9, pp. 20–25. Zbl0213.47201
  4. [4] Borel A., Serre J.-P., Corners and arithmetic groups, Comment. Math. Helv.48 (1973) 436-491. Zbl0274.22011MR387495
  5. [5] Borel A., Tits J., Groupes réductifs, I.H.E.S27 (1965) 55-150. Zbl0145.17402MR207712
  6. [6] Duistermaat J., Guillemin V., The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math.29 (1975) 39-79. Zbl0307.35071MR405514
  7. [7] Freitag E., Hilbert Modular Forms, Springer-Verlag, 1990. Zbl0702.11029MR1050763
  8. [8] Gelfand I.M., Piatetski-Shapiro I.I., Unitary representations in homogeneous spaces with discrete stationary groups, Soviet Math. Dokl.3 (1962) 1528-1531. Zbl0119.27002
  9. [9] Guillemin V., Sojourn times and asymptotic properties of the scattering matrix, Publ. RIMS, Kyoto Univ.12 (1977) 69-88, (Suppl.). Zbl0381.35064MR448453
  10. [10] Guillemin V., Notes on scattering theory, MIT, 1976, unpublished notes. 
  11. [11] Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, Lect. Notes in Math., 62, 1968. Zbl0186.04702
  12. [12] Hörmander L., Fourier integral operators I, Acta Math.127 (1971) 79-183. Zbl0212.46601MR388463
  13. [13] Hörmander L., The Analysis of Linear Partial Differential Operators, Vol. I, Springer-Verlag, Berlin, 1983. Zbl0521.35002
  14. [14] Hörmander L., The Analysis of Linear Partial Differential Operators, Vol. IV, Springer-Verlag, Berlin, 1985. Zbl0601.35001
  15. [15] Ji L., The Weyl upper bound on the discrete spectrum of locally symmetric spaces, J.D.G.51 (1999) 97-147. Zbl1036.58028MR1703605
  16. [16] Ji L., McPherson R., Geometry of compactifications of locally symmetric spaces, preprint, 1997. 
  17. [17] Kuznecov V.N., Petersson's conjecture for cusp forms of weight 0 and Linnik's conjecture: sums of Kloosterman sums, Math. USSR Sbornik39 (1981). Zbl0461.10017
  18. [18] Langlands R., On the Functional Equations Satisfied by Eisenstein Series, Lect. Notes in Math., 544, 1976. Zbl0332.10018MR579181
  19. [19] Langlands R., Eisenstein series, the trace formula, and the modern theory of automorphic forms, in: Number Theory, Trace Formula and Discrete Groups, Academic Press, Boston, MA, 1989, pp. 125-155. Zbl0671.10025MR993313
  20. [20] Lax P., Phillips R., Scattering Theory for Automorphic Functions, Princeton University Press, 1978. Zbl0362.10022
  21. [21] Müller W., The trace class conjecture in the theory of automorphic forms, Ann. of Math.130 (1989) 473-529. Zbl0701.11019MR1025165
  22. [22] Petkov V., Stoyanov L., Geometry of Reflecting Rays and Inverse Spectral Problems, Wiley, 1992. Zbl0761.35077MR1172998
  23. [23] Saper L., Tilings and finite energy retractions of locally symmetric spaces, Comment. Math. Helv.72 (1997) 167-202. Zbl0890.22003MR1470087
  24. [24] Selberg A., On discontinuous groups in higher dimensional symmetric spaces, in: Contributions to Function Theory, Tata Inst. of Fund. Res, Bombay, 1960. Zbl0201.36603MR130324
  25. [25] Zelditch S., Kuznecov sum formulæ and Szegö limit formulæ on manifolds, Comm. P.D.E.17 (1992) 221-260. Zbl0749.58062MR1151262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.