Binomial residues
Eduardo Cattani[1]; Alicia Dickenstein[2]; Bernd Sturmfels[3]
- [1] University of Massachusetts, Department of Mathematics and Statistics, Amherst MA 01003 (USA)
- [2] Universidad de Buenos Aires, Departamento de Matematica, FCEyN (1428), Buenos Aires (Argentine)
- [3] University of California, Department of Mathematics, Berkeley CA 94720(USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 3, page 687-708
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCattani, Eduardo, Dickenstein, Alicia, and Sturmfels, Bernd. "Binomial residues." Annales de l’institut Fourier 52.3 (2002): 687-708. <http://eudml.org/doc/115991>.
@article{Cattani2002,
abstract = {A binomial residue is a rational function defined by a hypergeometric integral whose
kernel is singular along binomial divisors. Binomial residues provide an integral
representation for rational solutions of $A$-hypergeometric systems of Lawrence type. The
space of binomial residues of a given degree, modulo those which are polynomial in some
variable, has dimension equal to the Euler characteristic of the matroid associated with
$A$.},
affiliation = {University of Massachusetts, Department of Mathematics and Statistics, Amherst MA 01003 (USA); Universidad de Buenos Aires, Departamento de Matematica, FCEyN (1428), Buenos Aires (Argentine); University of California, Department of Mathematics, Berkeley CA 94720(USA)},
author = {Cattani, Eduardo, Dickenstein, Alicia, Sturmfels, Bernd},
journal = {Annales de l’institut Fourier},
keywords = {binomial residues; hypergeometric functions; Lawrence configurations},
language = {eng},
number = {3},
pages = {687-708},
publisher = {Association des Annales de l'Institut Fourier},
title = {Binomial residues},
url = {http://eudml.org/doc/115991},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Cattani, Eduardo
AU - Dickenstein, Alicia
AU - Sturmfels, Bernd
TI - Binomial residues
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 3
SP - 687
EP - 708
AB - A binomial residue is a rational function defined by a hypergeometric integral whose
kernel is singular along binomial divisors. Binomial residues provide an integral
representation for rational solutions of $A$-hypergeometric systems of Lawrence type. The
space of binomial residues of a given degree, modulo those which are polynomial in some
variable, has dimension equal to the Euler characteristic of the matroid associated with
$A$.
LA - eng
KW - binomial residues; hypergeometric functions; Lawrence configurations
UR - http://eudml.org/doc/115991
ER -
References
top- V. Batyrev, D. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. 75 (1994), 293-338 Zbl0851.14021MR1290195
- A. Björner, The homology and shellability of matroids and geometric lattices, (1992), Cambridge University Press Zbl0772.05027MR1165544
- A. Björner, M.Las Vergnas, B.Sturmfels, N. White, G. Ziegler, Oriented Matroids, (1993), Cambridge University Press Zbl0773.52001MR1226888
- M. Brion, M. Vergne, Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Norm. Sup. 32 (1999), 715-741 Zbl0945.32003MR1710758
- E. Cattani, D. Cox, A. Dickenstein, Residues in toric varieties, Compositio Mathematica 108 (1997), 35-76 Zbl0883.14029MR1458757
- E. Cattani, A. Dickenstein, A global view of residues in the torus, Journal of Pure and Applied Algebra 117 & 118 (1997), 119-144 Zbl0899.14024MR1457836
- E. Cattani, A. Dickenstein, B. Sturmfels, Residues and resultants, J. Math. Sci. Univ. Tokyo 5 (1998), 119-148 Zbl0933.14033MR1617074
- E. Cattani, A. Dickenstein, B. Sturmfels, Rational hypergeometric functions, Compositio Mathematica 128 (2001), 217-240 Zbl0990.33013MR1850183
- D. Cox, The homogeneous coordinate ring of a toric variety, Journal of Algebraic Geometry 4 (1995), 17-50 Zbl0846.14032MR1299003
- D. Cox, Toric residues, Arkiv för Matematik 34 (1996), 73-96 Zbl0904.14029MR1396624
- I. M. Gel'fand, A. Zelevinsky, M. Kapranov, Hypergeometric functions and toral manifolds, Functional Analysis and its Appl. 23 (1989), 94-106 Zbl0721.33006MR1011353
- I. M. Gel'fand, M. Kapranov, A. Zelevinsky, Generalized Euler integrals and -hypergeometric functions, Advances in Math. 84 (1990), 255-271 Zbl0741.33011MR1080980
- P. Griffiths, J. Harris, Principles of Algebraic Geometry, (1978), John Wiley & Sons, New York Zbl0408.14001MR507725
- J. Kaneko, The Gauss-Manin connection of the integral of the deformed difference product, Duke Math. J. 92 (1998), 355-379 Zbl0947.32009MR1612801
- I. Novik, A. Postnikov, B.Sturmfels, Syzygies of oriented matroids, Duke Math. J. 111 (2002), 287-317 Zbl1022.13002MR1882136
- P. Orlik, H. Terao, Arrangements of Hyperplanes, Volume 300 (1992), Springer-Verlag, Heidelberg Zbl0757.55001MR1217488
- B. Sturmfels, Gröbner Bases and Convex Polytopes, (1995), American Mathematical Society, Providence Zbl0856.13020MR1363949
- M. Saito, B. Sturmfels, and N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Volume 6 (2000), Springer-Verlag, Heidelberg Zbl0946.13021MR1734566
- A. Tsikh, Multidimensional Residues and Their Applications, (1992), American Math. Society, Providence Zbl0758.32001MR1181199
- A. Varchenko, Multidimensional hypergeometric functions in conformal field theory, algebraic -theory, algebraic geometry, Proceedings of the International Congress of Mathematicians, (Kyoto, 1990) Vol. I, II (1991), 281-300 Zbl0747.33002
- T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Memoirs of the AMS 1 (1975) Zbl0296.50010MR357135
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.