Binomial residues

Eduardo Cattani[1]; Alicia Dickenstein[2]; Bernd Sturmfels[3]

  • [1] University of Massachusetts, Department of Mathematics and Statistics, Amherst MA 01003 (USA)
  • [2] Universidad de Buenos Aires, Departamento de Matematica, FCEyN (1428), Buenos Aires (Argentine)
  • [3] University of California, Department of Mathematics, Berkeley CA 94720(USA)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 3, page 687-708
  • ISSN: 0373-0956

Abstract

top
A binomial residue is a rational function defined by a hypergeometric integral whose kernel is singular along binomial divisors. Binomial residues provide an integral representation for rational solutions of A -hypergeometric systems of Lawrence type. The space of binomial residues of a given degree, modulo those which are polynomial in some variable, has dimension equal to the Euler characteristic of the matroid associated with A .

How to cite

top

Cattani, Eduardo, Dickenstein, Alicia, and Sturmfels, Bernd. "Binomial residues." Annales de l’institut Fourier 52.3 (2002): 687-708. <http://eudml.org/doc/115991>.

@article{Cattani2002,
abstract = {A binomial residue is a rational function defined by a hypergeometric integral whose kernel is singular along binomial divisors. Binomial residues provide an integral representation for rational solutions of $A$-hypergeometric systems of Lawrence type. The space of binomial residues of a given degree, modulo those which are polynomial in some variable, has dimension equal to the Euler characteristic of the matroid associated with $A$.},
affiliation = {University of Massachusetts, Department of Mathematics and Statistics, Amherst MA 01003 (USA); Universidad de Buenos Aires, Departamento de Matematica, FCEyN (1428), Buenos Aires (Argentine); University of California, Department of Mathematics, Berkeley CA 94720(USA)},
author = {Cattani, Eduardo, Dickenstein, Alicia, Sturmfels, Bernd},
journal = {Annales de l’institut Fourier},
keywords = {binomial residues; hypergeometric functions; Lawrence configurations},
language = {eng},
number = {3},
pages = {687-708},
publisher = {Association des Annales de l'Institut Fourier},
title = {Binomial residues},
url = {http://eudml.org/doc/115991},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Cattani, Eduardo
AU - Dickenstein, Alicia
AU - Sturmfels, Bernd
TI - Binomial residues
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 3
SP - 687
EP - 708
AB - A binomial residue is a rational function defined by a hypergeometric integral whose kernel is singular along binomial divisors. Binomial residues provide an integral representation for rational solutions of $A$-hypergeometric systems of Lawrence type. The space of binomial residues of a given degree, modulo those which are polynomial in some variable, has dimension equal to the Euler characteristic of the matroid associated with $A$.
LA - eng
KW - binomial residues; hypergeometric functions; Lawrence configurations
UR - http://eudml.org/doc/115991
ER -

References

top
  1. V. Batyrev, D. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. 75 (1994), 293-338 Zbl0851.14021MR1290195
  2. A. Björner, The homology and shellability of matroids and geometric lattices, (1992), Cambridge University Press Zbl0772.05027MR1165544
  3. A. Björner, M.Las Vergnas, B.Sturmfels, N. White, G. Ziegler, Oriented Matroids, (1993), Cambridge University Press Zbl0773.52001MR1226888
  4. M. Brion, M. Vergne, Arrangement of hyperplanes. I. Rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Norm. Sup. 32 (1999), 715-741 Zbl0945.32003MR1710758
  5. E. Cattani, D. Cox, A. Dickenstein, Residues in toric varieties, Compositio Mathematica 108 (1997), 35-76 Zbl0883.14029MR1458757
  6. E. Cattani, A. Dickenstein, A global view of residues in the torus, Journal of Pure and Applied Algebra 117 & 118 (1997), 119-144 Zbl0899.14024MR1457836
  7. E. Cattani, A. Dickenstein, B. Sturmfels, Residues and resultants, J. Math. Sci. Univ. Tokyo 5 (1998), 119-148 Zbl0933.14033MR1617074
  8. E. Cattani, A. Dickenstein, B. Sturmfels, Rational hypergeometric functions, Compositio Mathematica 128 (2001), 217-240 Zbl0990.33013MR1850183
  9. D. Cox, The homogeneous coordinate ring of a toric variety, Journal of Algebraic Geometry 4 (1995), 17-50 Zbl0846.14032MR1299003
  10. D. Cox, Toric residues, Arkiv för Matematik 34 (1996), 73-96 Zbl0904.14029MR1396624
  11. I. M. Gel'fand, A. Zelevinsky, M. Kapranov, Hypergeometric functions and toral manifolds, Functional Analysis and its Appl. 23 (1989), 94-106 Zbl0721.33006MR1011353
  12. I. M. Gel'fand, M. Kapranov, A. Zelevinsky, Generalized Euler integrals and 𝒜 -hypergeometric functions, Advances in Math. 84 (1990), 255-271 Zbl0741.33011MR1080980
  13. P. Griffiths, J. Harris, Principles of Algebraic Geometry, (1978), John Wiley & Sons, New York Zbl0408.14001MR507725
  14. J. Kaneko, The Gauss-Manin connection of the integral of the deformed difference product, Duke Math. J. 92 (1998), 355-379 Zbl0947.32009MR1612801
  15. I. Novik, A. Postnikov, B.Sturmfels, Syzygies of oriented matroids, Duke Math. J. 111 (2002), 287-317 Zbl1022.13002MR1882136
  16. P. Orlik, H. Terao, Arrangements of Hyperplanes, Volume 300 (1992), Springer-Verlag, Heidelberg Zbl0757.55001MR1217488
  17. B. Sturmfels, Gröbner Bases and Convex Polytopes, (1995), American Mathematical Society, Providence Zbl0856.13020MR1363949
  18. M. Saito, B. Sturmfels, and N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Volume 6 (2000), Springer-Verlag, Heidelberg Zbl0946.13021MR1734566
  19. A. Tsikh, Multidimensional Residues and Their Applications, (1992), American Math. Society, Providence Zbl0758.32001MR1181199
  20. A. Varchenko, Multidimensional hypergeometric functions in conformal field theory, algebraic K -theory, algebraic geometry, Proceedings of the International Congress of Mathematicians, (Kyoto, 1990) Vol. I, II (1991), 281-300 Zbl0747.33002
  21. T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Memoirs of the AMS 1 (1975) Zbl0296.50010MR357135

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.