Combinatorial construction of toric residues.
Amit Khetan[1]; Ivan Soprounov
- [1] University of Massachusetts, Department of Mathematics and Statistics, Amherst, MA 01003 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 2, page 511-548
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKhetan, Amit, and Soprounov, Ivan. "Combinatorial construction of toric residues.." Annales de l’institut Fourier 55.2 (2005): 511-548. <http://eudml.org/doc/116199>.
@article{Khetan2005,
abstract = {In this paper we investigate the problem of finding an explicit element whose toric
residue is equal to one. Such an element is shown to exist if and only if the associated
polytopes are essential. We reduce the problem to finding a collection of partitions of
the lattice points in the polytopes satisfying a certain combinatorial property. We use
this description to solve the problem when $n=2$ and for any $n$ when the polytopes of
the divisors share a complete flag of faces. The latter generalizes earlier results when
the divisors were all ample.},
affiliation = {University of Massachusetts, Department of Mathematics and Statistics, Amherst, MA 01003 (USA)},
author = {Khetan, Amit, Soprounov, Ivan},
journal = {Annales de l’institut Fourier},
keywords = {Toric varieties; toric residues; semi-ample degrees; facet colorings; combinatorial degree; toric variety; semi-ample divisor},
language = {eng},
number = {2},
pages = {511-548},
publisher = {Association des Annales de l'Institut Fourier},
title = {Combinatorial construction of toric residues.},
url = {http://eudml.org/doc/116199},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Khetan, Amit
AU - Soprounov, Ivan
TI - Combinatorial construction of toric residues.
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 2
SP - 511
EP - 548
AB - In this paper we investigate the problem of finding an explicit element whose toric
residue is equal to one. Such an element is shown to exist if and only if the associated
polytopes are essential. We reduce the problem to finding a collection of partitions of
the lattice points in the polytopes satisfying a certain combinatorial property. We use
this description to solve the problem when $n=2$ and for any $n$ when the polytopes of
the divisors share a complete flag of faces. The latter generalizes earlier results when
the divisors were all ample.
LA - eng
KW - Toric varieties; toric residues; semi-ample degrees; facet colorings; combinatorial degree; toric variety; semi-ample divisor
UR - http://eudml.org/doc/116199
ER -
References
top- Ian Anderson, A first course in combinatorial mathematics (2nd ed.), (1989), Oxford University Press Zbl0662.05002MR1029023
- V. Batyrev, D. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke J. Math. 75 (1994), 293-338 Zbl0851.14021MR1290195
- V. Batyrev, E. Materov, Toric Residues and Mirror Symmetry, Moscow Math. J. 2 (2002), 435-475 Zbl1026.14016MR1988969
- E. Cattani, D. Cox, A. Dickenstein, Residues in Toric Varieties, Compositio Math. 108 (1997), 35-76 Zbl0883.14029MR1458757
- E. Cattani, A. Dickenstein, A global view of residues in the torus, J. Pure Appl. Algebra 117/118 (1997), 119-144 Zbl0899.14024MR1457836
- E. Cattani, A. Dickenstein, Planar Configurations of Lattice Vectors and GKZ-Rational Toric Fourfolds in , J. Alg. Comb. 19 (2004), 47-65 Zbl1054.33009MR2056766
- E. Cattani, A. Dickenstein, B. Sturmfels, Residues and Resultants, J. Math. Sci. Univ. Tokyo 5 (1998), 119-148 Zbl0933.14033MR1617074
- E. Cattani, A. Dickenstein, B. Sturmfels, Computing multidimensional residues, (1996), 135-164, Birkhäuser, Basel Zbl0882.13020
- E. Cattani, A. Dickenstein, B. Sturmfels, Rational hypergeometric functions, Compositio Math. 128 (2001), 217-240 Zbl0990.33013MR1850183
- E. Cattani, A. Dickenstein, B. Sturmfels, Binomial Residues, Ann. Inst. Fourier 52 (2002), 687-708 Zbl1015.32007MR1907384
- D.A. Cox, A. Dickenstein, Codimension theorems for complete toric varieties Zbl1083.14058
- D.A. Cox, The homogeneous coordinate ring of a toric variety, J. Alg. Geom. 4 (1995), 17-50 Zbl0846.14032MR1299003
- D.A. Cox, Toric residues, Arkiv Mat. 34 (1996), 73-96 Zbl0904.14029MR1396624
- C. D'Andrea, A. Khetan, Macaulay style formulas for toric residues Zbl1076.14081
- W. Fulton, Introduction to Toric Varieties, (1993), Princeton Univ. Press, Princeton Zbl0813.14039MR1234037
- I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, (1994), Birkhäuser Boston, Inc., Boston Zbl0827.14036MR1264417
- O.A. Gelfond, A.G. Khovanskii, Toric geometry and Grothendieck residues, Moscow Math. J. 2 (2002), 99-112 Zbl1044.14029MR1900586
- I. Soprounov, Residues and tame symbols on toroidal varieties, Compositio Math. 140 (2004), 1593-1613 Zbl1075.14052MR2098404
- I. Soprounov, Toric residue and combinatorial degree, Trans. Amer. Math. Soc. 357 (2005), 1963-1975 Zbl1070.14048MR2115085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.