The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems
Cornelius Greither[1]; Radiu Kučera[2]
- [1] Universität des Bundeswehr München, Fakultät fur Informatik, Institut für theoretische Informatik und Mathematik, 85577 Neubiberg (Allemagne)
- [2] Masarykova Univerzita, P{ř}íprodov{ě}decká Fakulta, Janá{č}kovo nám 2a, 663 95 Brno (République Tchèque)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 3, page 735-777
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGreither, Cornelius, and Kučera, Radiu. "The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems." Annales de l’institut Fourier 52.3 (2002): 735-777. <http://eudml.org/doc/115993>.
@article{Greither2002,
abstract = {The so-called Lifted Root Number Conjecture is a strengthening of Chinburg’s $\Omega (3)$-
conjecture for Galois extensions $K/F$ of number fields. It is certainly more difficult
than the $\Omega (3)$-localization. Following the lead of Ritter and Weiss, we prove the Lifted Root Number
Conjecture for the case that $F=\{\mathbb \{Q\}\}$ and the degree of $K/F$ is an odd prime, with
another small restriction on ramification. The very explicit calculations with cyclotomic
units use trees and some classical combinatorics for bookkeeping. An important point is
the following: While dealing with our Euler systems, we have to keep track of the action
of the Galois group, whose order is not invertible in the coefficient ring $\{\mathbb \{Z\}\}_p$.
At the end we prove a generalization of the well-known Rédei-Reichardt theorem and
explain the close link with our theory.},
affiliation = {Universität des Bundeswehr München, Fakultät fur Informatik, Institut für theoretische Informatik und Mathematik, 85577 Neubiberg (Allemagne); Masarykova Univerzita, P\{ř\}íprodov\{ě\}decká Fakulta, Janá\{č\}kovo nám 2a, 663 95 Brno (République Tchèque)},
author = {Greither, Cornelius, Kučera, Radiu},
journal = {Annales de l’institut Fourier},
keywords = {lifted Chinburg conjecture; Euler systems; combinatorics; trees},
language = {eng},
number = {3},
pages = {735-777},
publisher = {Association des Annales de l'Institut Fourier},
title = {The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems},
url = {http://eudml.org/doc/115993},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Greither, Cornelius
AU - Kučera, Radiu
TI - The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 3
SP - 735
EP - 777
AB - The so-called Lifted Root Number Conjecture is a strengthening of Chinburg’s $\Omega (3)$-
conjecture for Galois extensions $K/F$ of number fields. It is certainly more difficult
than the $\Omega (3)$-localization. Following the lead of Ritter and Weiss, we prove the Lifted Root Number
Conjecture for the case that $F={\mathbb {Q}}$ and the degree of $K/F$ is an odd prime, with
another small restriction on ramification. The very explicit calculations with cyclotomic
units use trees and some classical combinatorics for bookkeeping. An important point is
the following: While dealing with our Euler systems, we have to keep track of the action
of the Galois group, whose order is not invertible in the coefficient ring ${\mathbb {Z}}_p$.
At the end we prove a generalization of the well-known Rédei-Reichardt theorem and
explain the close link with our theory.
LA - eng
KW - lifted Chinburg conjecture; Euler systems; combinatorics; trees
UR - http://eudml.org/doc/115993
ER -
References
top- D. Burns, Equivariant Tamagawa numbers and Galois module theory I, Compositio Math. 127 (2001), 304-337 Zbl1014.11070MR1863302
- D. Burns, M. Flach, Equivariant Tamagawa numbers of motives, (1998) Zbl1156.11042
- D. Burns, C. Greither, On the equivariant Tamagawa number conjecture for Tate motives (submitted for publication) Zbl1142.11076
- N. Deo, Graph theory with applications to engineering and computer science, (1974), Prentice-Hall, Englewood Cliffs Zbl0285.05102MR360322
- K.-W. Gruenberg, J. Ritter, A. Weiss, A local approach to Chinburg's root number formula, Proc. London Math. Soc. (3) 79 (1999), 47-80 Zbl1041.11075MR1687551
- K.-W. Gruenberg, J. Ritter, A. Weiss, On Chinburg's root number conjecture, Jbr. Dt. Math.-Vereinigung 100 (1998), 36-44 Zbl0929.11054MR1617303
- J. Hurrelbrink, Circulant graphs and 4-ranks of ideal class groups, Can. J. Math. 46 (1994), 169-183 Zbl0792.05133MR1260342
- P. W. Kasteleyn, Graph theory and crystal physics, (1967), Academic Press, New York Zbl0205.28402MR253689
- J. Neukirch, Algebraic number theory, vol. 322 (1999), Springer Verlag, New York Zbl0956.11021MR1697859
- L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch 4 teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. reine angew. Math. 171 (1935), 55-60 Zbl0009.05101
- L. Rédei, H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. reine angew. Math. 170 (1934), 69-74 Zbl0007.39602
- J. Ritter, A. Weiss, The lifted root number conjecture for some cyclic extensions of , Acta Arithmetica XC.4 (1999), 313-340 Zbl0932.11071MR1723673
- K. Rubin, The main conjecture, Cyclotomic fields I and II 121 (1990), Springer, New York
- W. T. Tutte, The dissection of equilateral triangles into equilateral triangles, Proc. Cambridge Phil. Soc 44 (1948), 463-482 Zbl0030.40903MR27521
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.