The Lifted Root Number Conjecture for some cyclic extensions of ℚ

Jürgen Ritter; Alfred Weiss

Acta Arithmetica (1999)

  • Volume: 90, Issue: 4, page 313-340
  • ISSN: 0065-1036

How to cite

top

Jürgen Ritter, and Alfred Weiss. "The Lifted Root Number Conjecture for some cyclic extensions of ℚ." Acta Arithmetica 90.4 (1999): 313-340. <http://eudml.org/doc/207331>.

@article{JürgenRitter1999,
author = {Jürgen Ritter, Alfred Weiss},
journal = {Acta Arithmetica},
keywords = {Galois modules; cyclotomic units; -functions; regulators; lifted root number conjecture; cyclic tame extensions},
language = {eng},
number = {4},
pages = {313-340},
title = {The Lifted Root Number Conjecture for some cyclic extensions of ℚ},
url = {http://eudml.org/doc/207331},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Jürgen Ritter
AU - Alfred Weiss
TI - The Lifted Root Number Conjecture for some cyclic extensions of ℚ
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 4
SP - 313
EP - 340
LA - eng
KW - Galois modules; cyclotomic units; -functions; regulators; lifted root number conjecture; cyclic tame extensions
UR - http://eudml.org/doc/207331
ER -

References

top
  1. [Bu] D. Burns, Equivariant Tamagawa numbers and Galois module theory, I, preprint, King's College London, 1997. 
  2. [Cc] C. Chevalley, Sur la théorie du corps de classes dans les corps finis et les corps locaux, J. Fac. Sci. Tokyo 2 (1933), 365-476. Zbl59.0190.01
  3. [Ct] T. Chinburg, On the Galois structure of algebraic integers and S-units, Invent. Math. 74 (1983), 321-349. Zbl0564.12016
  4. [Fr] A. Fröhlich, Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields, Contemp. Math. 24, Amer. Math. Soc., 1983. Zbl0519.12001
  5. [GRW1] K. W. Gruenberg, J. Ritter and A. Weiss, A local approach to Chinburg's Root Number Conjecture, Proc. London Math. Soc. 79 (1999), 47-80. Zbl1041.11075
  6. [GRW2] K. W. Gruenberg, J. Ritter and A. Weiss, On Chinburg's Root Number Conjecture, Jahresber. Deutsch. Math.-Verein. 100 (1998), 36-44. Zbl0929.11054
  7. [La] S. Lang, Cyclotomic Fields I and II, Grad. Texts in Math. 121, Springer, New York, 1990. 
  8. [RW] J. Ritter and A. Weiss, Cohomology of units and L-values at zero, J. Amer. Math. Soc. 10 (1997), 513-552. Zbl0885.11059
  9. [Ru] K. Rubin, The Main Conjecture, Appendix in [La]. 
  10. [Se] J. P. Serre, Corps Locaux, Hermann, Paris, 1968. 
  11. [Sn] V. Snaith, Galois Module Structure, Fields Inst. Monogr. 2, Amer. Math. Soc., 1994. 
  12. [Ta] J. Tate, Les Conjectures de Stark sur les Fonctions L d'Artin en s=0, Progr. Math. 47, Birkhäuser, 1984. 
  13. [Wa] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982. 
  14. [We] A. Weiss, Multiplicative Galois Module Structure, Fields Inst. Monogr. 5, Amer. Math. Soc., 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.