The quantum duality principle
- [1] Università degli Studi di Roma "Tor Vergata", Dipartimento di Matematica, Via della Ricerca Scientifica 1, 00133 Roma (Italie)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 3, page 809-834
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- N. Abe, Hopf algebras, 74 (1980), Cambridge University Press, Cambridge Zbl0476.16008MR594432
- N. Ciccoli, F. Gavarini, A quantum duality principle for Poisson homogeneous spaces Zbl1296.17006
- V. G. Drinfeld, Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986) (1987), 798-820 Zbl0667.16003
- B. Enriquez, Quantization of Lie bialgebras and shuffle algebras of Lie algebras, (2000) Zbl1009.17010MR1868300
- P. Etingof, D. Kazhdan, Quantization of Lie bialgebras, I, Selecta Math. (New Series) 2 (1996), 1-41 Zbl0863.17008MR1403351
- P. Etingof, D. Kazhdan, Symétries quantiques, (Les Houches, 1995) (1995), 935-946, North-Holland, Amsterdam Zbl0962.17008
- L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtajan, Quantum groups, Algebraic Analysis (1989), 129-139, Academic Press, Boston
- F. Gavarini, Dual affine quantum groups, Math. Zeitschrift 234 (2000), 9-52 Zbl1015.17014MR1759490
- F. Gavarini, The global quantum duality principle: theory, examples, applications, (2001) Zbl1224.17021MR1877138
- C. Kassel, V. Turaev, Biquantization of Lie bialgebras, Pac. Jour. Math 195 (2000), 297-369 Zbl1040.17008MR1782170
- S. Montgomery, Hopf Algebras and Their Actions on Rings, 82 (1993), American Mathematical Society, Providence, RI Zbl0793.16029MR1243637