Page 1

Displaying 1 – 20 of 20

Showing per page

Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries

An De Rijdt, Nikolas Vander Vennet (2010)

Annales de l’institut Fourier

The notion of monoidal equivalence for compact quantum groups was recently introduced by Bichon, De Rijdt and Vaes. In this paper we prove that there is a natural bijective correspondence between actions of monoidally equivalent quantum groups on unital C * -algebras or on von Neumann algebras. This correspondence turns out to be very useful to obtain the behavior of Poisson and Martin boundaries under monoidal equivalence of quantum groups. Finally, we apply these results to identify the Poisson boundary...

Bar-invariant bases of the quantum cluster algebra of type A 2 ( 2 )

Xueqing Chen, Ming Ding, Jie Sheng (2011)

Czechoslovak Mathematical Journal

We construct bar-invariant [ q ± 1 / 2 ] -bases of the quantum cluster algebra of the valued quiver A 2 ( 2 ) , one of which coincides with the quantum analogue of the basis of the corresponding cluster algebra discussed in P. Sherman, A. Zelevinsky: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J., 4, 2004, 947–974.

Exponentiations over the quantum algebra U q ( s l 2 ( ) )

Sonia L’Innocente, Françoise Point, Carlo Toffalori (2013)

Confluentes Mathematici

We define and compare, by model-theoretical methods, some exponentiations over the quantum algebra U q ( s l 2 ( ) ) . We discuss two cases, according to whether the parameter q is a root of unity. We show that the universal enveloping algebra of s l 2 ( ) embeds in a non-principal ultraproduct of U q ( s l 2 ( ) ) , where q varies over the primitive roots of unity.

Invariants of the half-liberated orthogonal group

Teodor Banica, Roland Vergnioux (2010)

Annales de l’institut Fourier

The half-liberated orthogonal group O n * appears as intermediate quantum group between the orthogonal group O n , and its free version O n + . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between O n * and U n , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that...

Knot theory with the Lorentz group

João Faria Martins (2005)

Fundamenta Mathematicae

We analyse perturbative expansions of the invariants defined from unitary representations of the Quantum Lorentz Group in two different ways, namely using the Kontsevich Integral and weight systems, and the R-matrix in the Quantum Lorentz Group defined by Buffenoir and Roche. The two formulations are proved to be equivalent; and they both yield ℂ[[h]]h-valued knot invariants related with the Melvin-Morton expansion of the Coloured Jones Polynomial.

On a cubic Hecke algebra associated with the quantum group U q ( 2 )

Janusz Wysoczański (2010)

Banach Center Publications

We define an operator α on ℂ³ ⊗ ℂ³ associated with the quantum group U q ( 2 ) , which satisfies the Yang-Baxter equation and a cubic equation (α² - 1)(α + q²) = 0. This operator can be extended to a family of operators h j : = I j α I n - 2 - j on ( ³ ) n with 0 ≤ j ≤ n - 2. These operators generate the cubic Hecke algebra q , n ( 2 ) associated with the quantum group U q ( 2 ) . The purpose of this note is to present the construction.

Partial flag varieties and preprojective algebras

Christof Geiß, Bernard Leclerc, Jan Schröer (2008)

Annales de l’institut Fourier

Let Λ be a preprojective algebra of type A , D , E , and let G be the corresponding semisimple simply connected complex algebraic group. We study rigid modules in subcategories Sub Q for Q an injective Λ -module, and we introduce a mutation operation between complete rigid modules in Sub Q . This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to  G .

Quantum 4-sphere: the infinitesimal approach

F. Bonechi, M. Tarlini, N. Ciccoli (2003)

Banach Center Publications

We describe how the constructions of quantum homogeneous spaces using infinitesimal invariance and quantum coisotropic subgroups are related. As an example we recover the quantum 4-sphere of [2] through infinitesimal invariance with respect to q ( S U ( 2 ) ) .

Quantum SU(2) and the Baum-Connes conjecture

Christian Voigt (2012)

Banach Center Publications

We review the formulation and proof of the Baum-Connes conjecture for the dual of the quantum group S U q ( 2 ) of Woronowicz. As an illustration of this result we determine the K-groups of quantum automorphism groups of simple matrix algebras.

Relating quantum and braided Lie algebras

X. Gomez, S. Majid (2003)

Banach Center Publications

We outline our recent results on bicovariant differential calculi on co-quasitriangular Hopf algebras, in particular that if Γ is a quantum tangent space (quantum Lie algebra) for a CQT Hopf algebra A, then the space k Γ is a braided Lie algebra in the category of A-comodules. An important consequence of this is that the universal enveloping algebra U ( Γ ) is a bialgebra in the category of A-comodules.

The garden of quantum spheres

Ludwik Dąbrowski (2003)

Banach Center Publications

A list of known quantum spheres of dimension one, two and three is presented.

The geometric reductivity of the quantum group S L q ( 2 )

Michał Kępa, Andrzej Tyc (2011)

Colloquium Mathematicae

We introduce the concept of geometrically reductive quantum group which is a generalization of the Mumford definition of geometrically reductive algebraic group. We prove that if G is a geometrically reductive quantum group and acts rationally on a commutative and finitely generated algebra A, then the algebra of invariants A G is finitely generated. We also prove that in characteristic 0 a quantum group G is geometrically reductive if and only if every rational G-module is semisimple, and that in...

The quantum duality principle

Fabio Gavarini (2002)

Annales de l’institut Fourier

The “quantum duality principle” states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors 𝒬 𝒰 𝒜 𝒬 𝒮 𝒜 and 𝒬 𝒮 𝒜 𝒬 𝒰 𝒜 , inverse to...

When is a quantum space not a group?

Piotr Mikołaj Sołtan (2010)

Banach Center Publications

We give a survey of techniques from quantum group theory which can be used to show that some quantum spaces (objects of the category dual to the category of C*-algebras) do not admit any quantum group structure. We also provide a number of examples which include some very well known quantum spaces. Our tools include several purely quantum group theoretical results as well as study of existence of characters and traces on C*-algebras describing the considered quantum spaces as well as properties...

Currently displaying 1 – 20 of 20

Page 1