Minimality of subcanonical curves

Mireille Martin-Deschamps[1]

  • [1] Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Mathématiques, Bâtiment Fermat, 45 avenue des États-Unis, 78035 Versailles Cedex (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 4, page 1027-1040
  • ISSN: 0373-0956

Abstract

top
We prove the following result: let be a rank 2 bundle on the projective space 3 of dimension 3, and n an integer such that H 0 ( n - 1 ) = 0 and H 0 ( n ) 0 . Let C be a curve which is the zero locus of a section of ( n ) . Then C is minimal in its biliaison class.

How to cite

top

Martin-Deschamps, Mireille. "Minimalité des courbes sous-canoniques." Annales de l’institut Fourier 52.4 (2002): 1027-1040. <http://eudml.org/doc/116001>.

@article{Martin2002,
abstract = {Soient $\{\mathcal \{E\}\}$ un fibré de rang 2 sur l’espace projectif de dimension 3 sur un corps algébriquement clos et $n$ un entier tel que $H^0\{\mathcal \{E\}\}(n-1)=0$ et $H^0\{\mathcal \{E\}\}(n)\ne 0$. Toute courbe $C$ schéma des zéros d’une section non nulle de $\{\mathcal \{E\}\}(n)$ est une courbe minimale dans sa classe de biliaison.},
affiliation = {Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Mathématiques, Bâtiment Fermat, 45 avenue des États-Unis, 78035 Versailles Cedex (France)},
author = {Martin-Deschamps, Mireille},
journal = {Annales de l’institut Fourier},
keywords = {fiber bundle; biliaison; minimal curve; subcanonical curve},
language = {fre},
number = {4},
pages = {1027-1040},
publisher = {Association des Annales de l'Institut Fourier},
title = {Minimalité des courbes sous-canoniques},
url = {http://eudml.org/doc/116001},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Martin-Deschamps, Mireille
TI - Minimalité des courbes sous-canoniques
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1027
EP - 1040
AB - Soient ${\mathcal {E}}$ un fibré de rang 2 sur l’espace projectif de dimension 3 sur un corps algébriquement clos et $n$ un entier tel que $H^0{\mathcal {E}}(n-1)=0$ et $H^0{\mathcal {E}}(n)\ne 0$. Toute courbe $C$ schéma des zéros d’une section non nulle de ${\mathcal {E}}(n)$ est une courbe minimale dans sa classe de biliaison.
LA - fre
KW - fiber bundle; biliaison; minimal curve; subcanonical curve
UR - http://eudml.org/doc/116001
ER -

References

top
  1. E. Ballico, G. Bolondi, J. Migliore, The Lazarsfeld-Rao problem for liaison classes of two-codimensional subschemes of n , Amer. J. Math 113 (1991), 117-128 Zbl0754.14032MR1087803
  2. A. Buraggina, Biliaison classes of reflexive sheaves, Math. Nachr 201 (1999), 53-76 Zbl0949.14009MR1680849
  3. R. Hartshorne, Stable Vector Bundles of rank 2 on 3 , Math. Ann. 238 (1978), 229-280 Zbl0411.14002MR514430
  4. R. Hartshorne, Generalized Divisors on Gorenstein Schemes, K-Theory 8 (1994), 287-339 Zbl0826.14005MR1291023
  5. G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. Lond. Math. Soc 14 (1964), 689-713 Zbl0126.16801MR169877
  6. R. Hartshorne, M. Martin-Deschamps, D. Perrin, Un théorème de Rao pour les familles de courbes gauches, Journal of Pure and Applied Algebra Algebra 155 (2001), 53-76 Zbl1063.14057MR1804328
  7. M. Martin-Deschamps, From coherent sheaves to curves in 3  Zbl1167.14304MR1984201
  8. M. Martin-Deschamps, D. Perrin, Sur la classification des courbes gauches, Astérisque Vol (1990), 184-185 Zbl0717.14017MR1073438
  9. M. Martin-Deschamps, D. Perrin, Quand un morphisme de fibrés dégénère-t-il le long d'une courbe lisse ?, 200 (1998, July), Marcel Dekker, Inc. MR1651093
  10. J. Migliore, Geometric Invariants of Liaison, J. Algebra 99 (1986), 548-572 Zbl0596.14020MR837562
  11. A.P. Rao, Liaison among curves in 3 , Invent. Math. Vol. 50 (1979), 205-217 Zbl0406.14033MR520926

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.