Besicovitch subsets of self-similar sets

Ji-Hua Ma[1]; Zhi-Ying Wen[2]; Jun Wu[1]

  • [1] Wuhan University, Department of Mathematics, Wuhan 430072 (Rép. Pop. Chine)
  • [2] Tsinghua University, Department of mathematics, Beijing 10084 (Rép. Pop. Chine)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 4, page 1061-1074
  • ISSN: 0373-0956

Abstract

top
Let E be a self-similar set with similarities ratio r j ( 0 j m - 1 ) and Hausdorff dimension s , let p ( p 0 , p 1 ) ... p m - 1 be a probability vector. The Besicovitch-type subset of E is defined as E ( p ) = x E : lim n 1 n k = 1 n χ j ( x k ) = p j , 0 j m - 1 , where χ j is the indicator function of the set { j } . Let α = dim H ( E ( p ) ) = dim P ( E ( p ) ) = j = 0 m - 1 p j log p j j = 0 m - 1 p i log r j and g be a gauge function, then we prove in this paper:(i) If p = ( r 0 s , r 1 s , , r m - 1 s ) , then s ( E ( p ) ) = s ( E ) , 𝒫 s ( E ( p ) ) = 𝒫 s ( E ) , moreover both of s ( E ) and 𝒫 s ( E ) are finite positive;(ii) If p is a positive probability vector other than ( r 0 s , r 1 s , , r m - 1 s ) , then the gauge functions can be partitioned as follows g ( E ( p ) ) = + lim ¯ t 0 log g ( t ) log t α ; g ( E ( p ) ) = 0 lim ¯ t 0 log g ( t ) log t > α , 𝒫 g ( E ( p ) ) = + lim ̲ t 0 log g ( t ) log t α ; 𝒫 g ( E ( p ) ) = 0 lim ̲ t 0 log g ( t ) log t > α .

How to cite

top

Ma, Ji-Hua, Wen, Zhi-Ying, and Wu, Jun. "Besicovitch subsets of self-similar sets." Annales de l’institut Fourier 52.4 (2002): 1061-1074. <http://eudml.org/doc/116003>.

@article{Ma2002,
abstract = {Let $E$ be a self-similar set with similarities ratio $r_j (0\le j\le m-1)$ and Hausdorff dimension $s$, let $\vec\{p\}(p_0,p_1)\ldots p_\{m-1\}$ be a probability vector. The Besicovitch-type subset of $E$ is defined as\[E(\vec\{p\})=\Big \lbrace x\in E\colon \lim \_\{n\rightarrow \infty \}\{1\over n\} \sum \_\{k=1\}^\{n\}\chi \_\{j\}(x\_k)=p\_j,\quad 0\le j\le m- 1\Big \rbrace ,\]where $\chi _j$ is the indicator function of the set $\lbrace j\rbrace $. Let $\alpha =\dim _H(E(\vec\{p\}))=\dim _P(E(\vec\{p\})) =\{\sum _\{j=0\}^\{m-1\} p_j\log p_j\over \sum _\{j=0\}^\{m- 1\}p_i \log r_j\}$ and $g$ be a gauge function, then we prove in this paper:(i) If $\vec\{p\}=(r_0^s,r_1^s,\cdots ,r_\{m-1\}^s)$, then\[\{\mathcal \{H\}\}^s(E(\vec\{p\}))=\{\mathcal \{H\}\}^s(E),\;\{\mathcal \{P\}\}^s(E(\vec\{p\}))=\{\mathcal \{P\}\}^s(E),\]moreover both of $\{\mathcal \{H\}\}^s(E)$ and $\{\mathcal \{P\}\}^s(E)$ are finite positive;(ii) If $\vec\{p\}$ is a positive probability vector other than $(r_0^s,r_1^s,\cdots ,r_\{m-1\}^s)$, then the gauge functions can be partitioned as follows\begin\{equation*\} \{\mathcal \{H\}\}^g(E(\vec\{p\}))=+\infty \iff \mathop \{\overline\{\rm lim\}\}\_\{t\rightarrow 0\}\{\log g(t)\over \log t\}\le \alpha ;\ \{\mathcal \{H\}\}^g(E(\vec\{p\}))=0 \Longleftrightarrow \mathop \{\overline\{\rm lim\}\}\_\{t\rightarrow 0\}\{\log g(t)\over \log t\}&gt;\alpha , \end\{equation*\}\begin\{equation*\} \{\mathcal \{P\}\}^g(E(\vec\{p\}))=+\infty \Longleftrightarrow \mathop \{\underline\{\rm lim\}\}\_\{t\rightarrow 0\}\{\log g(t)\over \log t\}\le \alpha ;\ \{\mathcal \{P\}\}^g(E(\vec\{p\}))=0 \Longleftrightarrow \mathop \{\underline\{\rm lim\}\}\_\{t\rightarrow 0\}\{\log g(t)\over \log t\}&gt;\alpha . \end\{equation*\}},
affiliation = {Wuhan University, Department of Mathematics, Wuhan 430072 (Rép. Pop. Chine); Tsinghua University, Department of mathematics, Beijing 10084 (Rép. Pop. Chine); Wuhan University, Department of Mathematics, Wuhan 430072 (Rép. Pop. Chine)},
author = {Ma, Ji-Hua, Wen, Zhi-Ying, Wu, Jun},
journal = {Annales de l’institut Fourier},
keywords = {perturbation measures; gauge functions; Besicovitch set; Besicovitch sets; normal numbers; Hausdorff measures},
language = {eng},
number = {4},
pages = {1061-1074},
publisher = {Association des Annales de l'Institut Fourier},
title = {Besicovitch subsets of self-similar sets},
url = {http://eudml.org/doc/116003},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Ma, Ji-Hua
AU - Wen, Zhi-Ying
AU - Wu, Jun
TI - Besicovitch subsets of self-similar sets
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1061
EP - 1074
AB - Let $E$ be a self-similar set with similarities ratio $r_j (0\le j\le m-1)$ and Hausdorff dimension $s$, let $\vec{p}(p_0,p_1)\ldots p_{m-1}$ be a probability vector. The Besicovitch-type subset of $E$ is defined as\[E(\vec{p})=\Big \lbrace x\in E\colon \lim _{n\rightarrow \infty }{1\over n} \sum _{k=1}^{n}\chi _{j}(x_k)=p_j,\quad 0\le j\le m- 1\Big \rbrace ,\]where $\chi _j$ is the indicator function of the set $\lbrace j\rbrace $. Let $\alpha =\dim _H(E(\vec{p}))=\dim _P(E(\vec{p})) ={\sum _{j=0}^{m-1} p_j\log p_j\over \sum _{j=0}^{m- 1}p_i \log r_j}$ and $g$ be a gauge function, then we prove in this paper:(i) If $\vec{p}=(r_0^s,r_1^s,\cdots ,r_{m-1}^s)$, then\[{\mathcal {H}}^s(E(\vec{p}))={\mathcal {H}}^s(E),\;{\mathcal {P}}^s(E(\vec{p}))={\mathcal {P}}^s(E),\]moreover both of ${\mathcal {H}}^s(E)$ and ${\mathcal {P}}^s(E)$ are finite positive;(ii) If $\vec{p}$ is a positive probability vector other than $(r_0^s,r_1^s,\cdots ,r_{m-1}^s)$, then the gauge functions can be partitioned as follows\begin{equation*} {\mathcal {H}}^g(E(\vec{p}))=+\infty \iff \mathop {\overline{\rm lim}}_{t\rightarrow 0}{\log g(t)\over \log t}\le \alpha ;\ {\mathcal {H}}^g(E(\vec{p}))=0 \Longleftrightarrow \mathop {\overline{\rm lim}}_{t\rightarrow 0}{\log g(t)\over \log t}&gt;\alpha , \end{equation*}\begin{equation*} {\mathcal {P}}^g(E(\vec{p}))=+\infty \Longleftrightarrow \mathop {\underline{\rm lim}}_{t\rightarrow 0}{\log g(t)\over \log t}\le \alpha ;\ {\mathcal {P}}^g(E(\vec{p}))=0 \Longleftrightarrow \mathop {\underline{\rm lim}}_{t\rightarrow 0}{\log g(t)\over \log t}&gt;\alpha . \end{equation*}
LA - eng
KW - perturbation measures; gauge functions; Besicovitch set; Besicovitch sets; normal numbers; Hausdorff measures
UR - http://eudml.org/doc/116003
ER -

References

top
  1. A.S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann 110 (1934), 321-330 Zbl0009.39503MR1512941
  2. H.G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser 20 (1949), 31-36 Zbl0031.20801MR31026
  3. K.J. Falconer, Techniques in Fractal Geometry, (1997), John Wiley and sons inc. Zbl0869.28003MR1449135
  4. R. Kaufman, A further example on scales of Hausdorff functions, J. London Math. Soc 8 (1974), 585-586 Zbl0302.28015MR357721
  5. M. Moran, J. Rey, Singularity of self-similar measures with respect to Hausdorff measures, Trans. of Amer. Math. Soc. 350 (1998), 2297-2310 Zbl0899.28002MR1475691
  6. Y. Peres, The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure, Math. Proc. Camb. Phil. Soc 116 (1994), 513-526 Zbl0811.28005MR1291757
  7. A.N. Shiryayev, Probability, (1984), Springer-Verlag, New York Zbl0536.60001MR737192
  8. J. Taylor, The measure theory of random fractals, Math. Proc. Cambridge Philo. Soc 100 (1986), 383-408 Zbl0622.60021MR857718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.