A Cantor set in the plane that is not σ-monotone
A metric space (X,d) is monotone if there is a linear order < on X and a constant c such that d(x,y) ≤ cd(x,z) for all x < y < z in X, and σ-monotone if it is a countable union of monotone subspaces. A planar set homeomorphic to the Cantor set that is not σ-monotone is constructed and investigated. It follows that there is a metric on a Cantor set that is not σ-monotone. This answers a question raised by the second author.