Remarks on some subspaces of and of
- [1] Université Paris VII, UFR de Mathématiques, 2 place Jussieu, 75251 Paris Cedex 05 (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 4, page 1187-1218
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBourdaud, Gérard. "Remarques sur certains sous-espaces de $BMO ({\mathbb {R}}^n)$ et de $bmo({\mathbb {R}}^n)$." Annales de l’institut Fourier 52.4 (2002): 1187-1218. <http://eudml.org/doc/116007>.
@article{Bourdaud2002,
abstract = {On décrit de diverses façons les fermetures respectives, dans l’espace $BMO(\{\mathbb \{R\}\}^n)$ et dans sa version locale $bmo(\{\mathbb \{R\}\}^n)$, de l’ensemble des fonctions à support
compact et de l’ensemble des fonctions $C^\infty $ à support compact. Certains de ces
résultats sont nouveaux; d’autres, considérés comme classiques, ne semblent pas avoir
fait l’objet de publication. Des contre-exemples permettent de vérifier la diversité des
sous-espaces considérés.},
affiliation = {Université Paris VII, UFR de Mathématiques, 2 place Jussieu, 75251 Paris Cedex 05 (France)},
author = {Bourdaud, Gérard},
journal = {Annales de l’institut Fourier},
keywords = {bounded mean oscillations; vanishing mean oscillations; continuous mean oscillations},
language = {fre},
number = {4},
pages = {1187-1218},
publisher = {Association des Annales de l'Institut Fourier},
title = {Remarques sur certains sous-espaces de $BMO (\{\mathbb \{R\}\}^n)$ et de $bmo(\{\mathbb \{R\}\}^n)$},
url = {http://eudml.org/doc/116007},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Bourdaud, Gérard
TI - Remarques sur certains sous-espaces de $BMO ({\mathbb {R}}^n)$ et de $bmo({\mathbb {R}}^n)$
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1187
EP - 1218
AB - On décrit de diverses façons les fermetures respectives, dans l’espace $BMO({\mathbb {R}}^n)$ et dans sa version locale $bmo({\mathbb {R}}^n)$, de l’ensemble des fonctions à support
compact et de l’ensemble des fonctions $C^\infty $ à support compact. Certains de ces
résultats sont nouveaux; d’autres, considérés comme classiques, ne semblent pas avoir
fait l’objet de publication. Des contre-exemples permettent de vérifier la diversité des
sous-espaces considérés.
LA - fre
KW - bounded mean oscillations; vanishing mean oscillations; continuous mean oscillations
UR - http://eudml.org/doc/116007
ER -
References
top- J.M. Angeletti, S. Mazet, Ph. Tchamitchian, Analysis of second order elliptic operators whitout boundary conditions and with VMO or Hölderian coefficients, Multiscale Wavelet Methods for PDEs (1997), 495-539, Academic Press
- G. Bourdaud, Analyse fonctionnelle dans l'espace Euclidien, (1995), Pub. Math. Univ. Paris 7 Zbl0627.46048
- G. Bourdaud, M. Lanza, de Cristoforis, W. Sickel, Functional calculus on BMO and related spaces, J. Funct. Anal. 189 (2002), 515-538 Zbl1007.47028MR1892179
- D.C. Chang, The dual of Hardy spaces on a bounded domain in , Forum Math 6 (1994), 65-81 Zbl0803.42014MR1253178
- R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math 103 (1976), 611-635 Zbl0326.32011MR412721
- R. Coifman, G. Weiss, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc 83 (1977), 569-645 Zbl0358.30023MR447954
- C. Fefferman, E.M. Stein, spaces of several variables, Acta Math 129 (1972), 137-193 Zbl0257.46078MR447953
- J.B. Garnett, P.W. Jones, The distance in to , Ann. of Math 108 (1978), 373-393 Zbl0383.26010MR506992
- D. Goldberg, A local version of real Hardy space, Duke Math. J 46 (1979), 27-42 Zbl0409.46060MR523600
- T. Iwaniec, C. Sbordone, Riesz transforms and elliptic PDEs with coefficients, J. Anal. Math 74 (1998), 183-212 Zbl0909.35039MR1631658
- S. Janson, On functions with conditions on mean oscillation, Ark. Mat 14 (1976), 189-196 Zbl0341.43005MR438030
- F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math 14 (1961), 415-426 Zbl0102.04302MR131498
- P.W. Jones, Extension theorems for , Indiana Univ. Math. J 29 (1980), 41-66 Zbl0432.42017MR554817
- J.D. Lakey, Constructive decomposition of functions of finite central mean oscillation, Proc. Amer. Math. Soc 127 (1999), 2375-2384 Zbl0922.42008MR1486741
- J. Marschall, Pseudo-differential operators with non-regular symbols, (1985) Zbl0695.47047
- U. Neri, Fractional integration on the space and its dual, Studia Math 53 (1975), 175-189 Zbl0269.44012MR388074
- W. Rudin, Analyse réelle et complexe, (1975), Masson, Paris Zbl0333.28001MR662565
- T. Runst, W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, (1996), De Gruyter Zbl0873.35001MR1419319
- D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc 207 (1975), 391-405 Zbl0319.42006MR377518
- D.A. Stegenga, Bounded Toeplitz operators on and applications of duality between and the functions of bounded mean oscillation, Amer. J. Math 98 (1976), 573-589 Zbl0335.47018MR420326
- E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, (1993), Princeton University Press, Princeton Zbl0821.42001MR1232192
- A. Torchinsky, Real-Variable Methods in Harmonic Analysis, (1986), Academic Press Zbl0621.42001MR869816
- A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J 30 (1978), 163-171 Zbl0384.47023MR467384
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.