Convergence of Riemannian manifolds and Laplace operators. I

Atsushi Kasue[1]

  • [1] Osaka City University, Department of Mathematics, Sugimoto, Sumiyoshi, Osaka 558-8585 (Japon) et Kanazawa University, Department of Mathematics, Kanazawa 920-1192 (Japon)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 4, page 1219-1257
  • ISSN: 0373-0956

Abstract

top
We study the spectral convergence of compact Riemannian manifolds in relation with the Gromov-Hausdorff distance and discuss the geodesic distances and the energy forms of the limit spaces.

How to cite

top

Kasue, Atsushi. "Convergence of Riemannian manifolds and Laplace operators. I." Annales de l’institut Fourier 52.4 (2002): 1219-1257. <http://eudml.org/doc/116008>.

@article{Kasue2002,
abstract = {We study the spectral convergence of compact Riemannian manifolds in relation with the Gromov-Hausdorff distance and discuss the geodesic distances and the energy forms of the limit spaces.},
affiliation = {Osaka City University, Department of Mathematics, Sugimoto, Sumiyoshi, Osaka 558-8585 (Japon) et Kanazawa University, Department of Mathematics, Kanazawa 920-1192 (Japon)},
author = {Kasue, Atsushi},
journal = {Annales de l’institut Fourier},
keywords = {Laplace operator; energy form; heat kernel; spectral convergence; Gromov-Hausdorff distance; eigenvalue},
language = {eng},
number = {4},
pages = {1219-1257},
publisher = {Association des Annales de l'Institut Fourier},
title = {Convergence of Riemannian manifolds and Laplace operators. I},
url = {http://eudml.org/doc/116008},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Kasue, Atsushi
TI - Convergence of Riemannian manifolds and Laplace operators. I
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1219
EP - 1257
AB - We study the spectral convergence of compact Riemannian manifolds in relation with the Gromov-Hausdorff distance and discuss the geodesic distances and the energy forms of the limit spaces.
LA - eng
KW - Laplace operator; energy form; heat kernel; spectral convergence; Gromov-Hausdorff distance; eigenvalue
UR - http://eudml.org/doc/116008
ER -

References

top
  1. K. Akutagawa, Yamabe metrics of positive scalar curvature and conformally flat manifolds, Differential Geom. Appl 4 (1994), 239-258 Zbl0810.53030MR1299397
  2. K. Akutagawa, Convergence for Yamabe metrics of positive scalar curvature with integral bound on curvature, Pacific J. Math 175 (1996), 239-258 Zbl0881.53036MR1432834
  3. P. Bérard, G. Besson, S. Gallot, On embedding Riemannian manifolds in a Hilbert space using their heat kernels, (1988) Zbl0806.53044
  4. P. Bérard, G. Besson, S. Gallot, Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal 4 (1994), 373-398 Zbl0806.53044MR1280119
  5. G. Besson, A Kato type inequality for Riemannian submersion with totally geodesic fibers, Ann. Glob. Analysis and Geometry 4 (1986), 273-289 Zbl0631.53035MR910547
  6. M. Biroli, U. Mosco, A Saint-Venant principle for Dirichlet forms on discontinuous media, Ann. Mat. Pure Appl (4) 169 (1995), 125-181 Zbl0851.31008MR1378473
  7. G. Carron, Inégalités isopérimétriques de Faber-Krahn et conséquences, Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de M. Berger (Luminy, 1992) 1 (1996), 205-232, Soc. Math. France Zbl0884.58088
  8. J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal 9 (1999), 428-517 Zbl0942.58018MR1708448
  9. E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math 109 (1987), 319-334 Zbl0659.35009MR882426
  10. K. Fukaya, Collapsing Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math 87 (1987), 517-547 Zbl0589.58034MR874035
  11. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, (1994), Walter de Gruyter, Berlin-New York Zbl0838.31001MR1303354
  12. M. Gromov, Structures métriques pour les variétés riemanniennes, (1981), Cedic Fernand-Nathan, Paris Zbl0509.53034MR682063
  13. A. Grigor'yan, Heat kernel of a noncompact Riemannian manifold, Stochastic Analysis (Ithaca, NY, 1993) 57 (1993), 239-263, Amer. Math. Soc, Providence, R.I. Zbl0829.58041
  14. Y. Hashimoto, S. Manabe, Y. Ogura, Short time asymptotics and an approximation for the heat kernel of a singular diffusion, Itô's Stochastic Calculus and Probability Theory (1996), 129-140, Springer-Verlag, Tokyo Zbl0866.60066
  15. J. Heinonen, P. Koskela, Quasi conformal maps on metric spaces with controlled geometry, Acta Math 181 (1998), 1-61 Zbl0915.30018
  16. N. Ikeda, Y. Ogura, Degenerating sequences of Riemannian metrics on a manifold and their Brownian motions, Diffusions in Analysis and Geometry (1990), 293-312, Birkhäuser, Boston-Bassel-Berlin Zbl0742.58058
  17. D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J 53 (1986), 503-523 Zbl0614.35066MR850547
  18. A. Kasue, H. Kumura, Spectral convergence of Riemannian manifolds, Tohoku Math. J 46 (1994), 147-179 Zbl0814.53035MR1272877
  19. A. Kasue, H. Kumura, Spectral convergence of Riemannian manifolds, II, Tohoku Math. J 48 (1996), 71-120 Zbl0853.58100MR1373175
  20. A. Kasue, H. Kumura, Y. Ogura, Convergence of heat kernels on a compact manifold, Kyuushu J. Math 51 (1997), 453-524 Zbl0914.58031MR1470166
  21. A. Kasue, H. Kumura, Spectral convergence of conformally immersed surfaces with bounded mean curvature Zbl1043.58013MR1916863
  22. A. Kasue, Convergence of Riemannian manifolds and Laplace operators; II (in preparation) Zbl1099.53033
  23. A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math 55 (1985), 103-147 Zbl0578.32044MR793239
  24. Y. Ogura, Weak convergence of laws of stochastic processes on Riemannian manifolds, Probab. Theory Relat. Fields 119 (2001), 529-557 Zbl0983.58017MR1826406
  25. J.A. Ramírez, Short-time asymptotics in Dirichlet spaces, Comm. Pure Appl. Math 54 (2001), 259-293 Zbl1023.60049MR1809739
  26. L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequality, Duke Math. J., Int. Math. Res. Notices 2 (1992), 27-38 Zbl0769.58054MR1150597
  27. K. T. Sturm, Analysis on local Dirichlet spaces I. Recurrence,conservativeness and L p -Liouville properties, J. Reine Angew. Math. 456 (1994), 173-196 Zbl0806.53041MR1301456
  28. K. T. Sturm, Analysis on local Dirichlet spaces II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math 32 (1995), 275-312 Zbl0854.35015MR1355744
  29. K. T. Sturm, Analysis on local Dirichlet spaces III. The parabolic Harnack inequality, J. Math. Pures Appl 75 (1996), 273-297 Zbl0854.35016MR1387522
  30. K. Yoshikawa, Degeneration of algebraic manifolds and the continuity of the spectrum of the Laplacian, Nagoya Math. J 146 (1997), 83-129 Zbl0880.58030MR1460955

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.