On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle
Joël Merker[1]
- [1] Université de Provence, CMI, 39 rue Joliot-Curie, 13453 Marweille cedex 13 (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 5, page 1443-1523
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMerker, Joël. "On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle." Annales de l’institut Fourier 52.5 (2002): 1443-1523. <http://eudml.org/doc/116015>.
@article{Merker2002,
abstract = {In the present paper, we associate the techniques of the Lewy-Pinchuk reflection
principle with the Behnke-Sommer continuity principle. Extending a so-called reflection function to a parameterized congruence of Segre varieties, we are led to
studying the envelope of holomorphy of a certain domain covered by a smooth Levi-flat
“hat”. In our main theorem, we show that every $\{\mathcal \{C\}\}^\infty $-smooth CR diffeomorphism
$h: M\rightarrow M^\{\prime \}$ between two globally minimal real analytic hypersurfaces in $\{\mathbb \{C\}\}^n$ ($n\ge 2$) is real analytic at every point of $M$ if $M^\{\prime \}$ is holomorphically
nondegenerate. More generally, we establish that the reflection function $\{\mathcal \{R\}\}_h^\{\prime \}$ associated to such a $\{\mathcal \{C\}\}^\infty $-smooth CR diffeomorphism between two globally
minimal hypersurfaces in $\{\mathbb \{C\}\}^n$ ($n\ge 1$) always extends holomorphically to a
neighborhood of the graph of $\bar\{h\}$ in $M\times \overline\{M\}^\{\prime \}$, without any
nondegeneracy condition on $M^\{\prime \}$. This gives a new version of the Schwarz symmetry
principle to several complex variables. Finally, we show that every $\{\mathcal \{C\}\}^\infty $-
smooth CR mapping $h: M\rightarrow M^\{\prime \}$ between two real analytic hypersurfaces containing no
complex curves is real analytic at every point of $M$, without any rank condition on $h$.},
affiliation = {Université de Provence, CMI, 39 rue Joliot-Curie, 13453 Marweille cedex 13 (France)},
author = {Merker, Joël},
journal = {Annales de l’institut Fourier},
keywords = {reflection principle; continuity principle; CR diffeomorphism; holomorphic nondegeneracy; global minimality in the sense of Trépreau-Tumanov; reflection function; envelopes of holomorphy; envelopes of holomorphy of domains; smooth real analytic hypersurfaces; globally minimal; holomorphically nondegenerate},
language = {eng},
number = {5},
pages = {1443-1523},
publisher = {Association des Annales de l'Institut Fourier},
title = {On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle},
url = {http://eudml.org/doc/116015},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Merker, Joël
TI - On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1443
EP - 1523
AB - In the present paper, we associate the techniques of the Lewy-Pinchuk reflection
principle with the Behnke-Sommer continuity principle. Extending a so-called reflection function to a parameterized congruence of Segre varieties, we are led to
studying the envelope of holomorphy of a certain domain covered by a smooth Levi-flat
“hat”. In our main theorem, we show that every ${\mathcal {C}}^\infty $-smooth CR diffeomorphism
$h: M\rightarrow M^{\prime }$ between two globally minimal real analytic hypersurfaces in ${\mathbb {C}}^n$ ($n\ge 2$) is real analytic at every point of $M$ if $M^{\prime }$ is holomorphically
nondegenerate. More generally, we establish that the reflection function ${\mathcal {R}}_h^{\prime }$ associated to such a ${\mathcal {C}}^\infty $-smooth CR diffeomorphism between two globally
minimal hypersurfaces in ${\mathbb {C}}^n$ ($n\ge 1$) always extends holomorphically to a
neighborhood of the graph of $\bar{h}$ in $M\times \overline{M}^{\prime }$, without any
nondegeneracy condition on $M^{\prime }$. This gives a new version of the Schwarz symmetry
principle to several complex variables. Finally, we show that every ${\mathcal {C}}^\infty $-
smooth CR mapping $h: M\rightarrow M^{\prime }$ between two real analytic hypersurfaces containing no
complex curves is real analytic at every point of $M$, without any rank condition on $h$.
LA - eng
KW - reflection principle; continuity principle; CR diffeomorphism; holomorphic nondegeneracy; global minimality in the sense of Trépreau-Tumanov; reflection function; envelopes of holomorphy; envelopes of holomorphy of domains; smooth real analytic hypersurfaces; globally minimal; holomorphically nondegenerate
UR - http://eudml.org/doc/116015
ER -
References
top- R.A. Ajrapetyan, Extension of CR-functions from piecewise smooth CR manifolds, Mat. Sb. 134 (1987), 108-118 Zbl0635.32012
- M.S. Baouendi, P. Ebenfelt, L.P. Rothschild, Algebraicity of holomorphic mappings between real algebraic sets in , Acta Math. 177 (1996), 225-273 Zbl0890.32005MR1440933
- M.S. Baouendi, P. Ebenfelt, L.P. Rothschild, Real submanifolds in complex space and their mappings, 47 (1999), Princeton University Press,, Princeton, NJ Zbl0944.32040
- M.S. Baouendi, P. Ebenfelt, L.P. Rothschild, Convergence and finite determinacy of formal CR mappings, J. Amer. Math. Soc. 13 (2000), 697-723 Zbl0958.32033MR1775734
- M.S. Baouendi, P. Ebenfelt, L.P. Rothschild, Local geometric properties of real submanifolds in complex space, Bull. Amer. Math. Soc. 37 (2000), 309-336 Zbl0955.32027MR1754643
- M.S. Baouendi, X. Huang, L.P. Rothschild, Regularity of CR mappings between algebraic hypersurfaces, Invent. Math. 125 (1996), 13-36 Zbl0855.32009MR1389959
- M.S. Baouendi, H. Jacobowitz, F. Treves, On the analyticity of CR mappings, Ann. of Math. 122 (1985), 365-400 Zbl0583.32021MR808223
- M.S. Baouendi, L.P. Rothschild, Germs of CR maps between real analytic hypersurfaces, Invent. Math. 93 (1988), 481-500 Zbl0653.32020MR952280
- M.S. Baouendi, L.P. Rothschild, Geometric properties of mappings between hypersurfaces in complex space, J. Differential Geom. 31 (1990), 473-499 Zbl0702.32014MR1037411
- M.S. Baouendi, L.P. Rothschild, Cauchy-Riemann functions on manifolds of higher codimension in complex space, Invent. Math. 101 (1990), 45-56 Zbl0712.32009MR1055709
- M.S. Baouendi, L.P. Rothschild, Mappings of real algebraic hypersurfaces, J. Amer. Math. Soc. 8 (1995), 997-1015 Zbl0869.14025MR1317227
- M.S. Baouendi, F. Treves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. 113 (1981), 387-421 Zbl0491.35036MR607899
- M.S. Baouendi, F. Treves, About the holomorphic extension of CR functions on real hypersurfaces in complex space, Duke Math. J. 51 (1984), 77-107 Zbl0564.32011MR744289
- E. Bedford, J.E. Fornaess, Local extension of CR functions from weakly pseudoconvex boundaries, Michigan Math. J. 25 (1978), 259-262 Zbl0401.32007MR512898
- M.S. Baouendi, P. Ebenfelt, L.P. Rothschild, E. Bedford, S. Pinchuk, Analytic continuation of biholomorphic maps, Michigan Math. J. 28 (1987), 405-408 Zbl0681.32010
- B. Coupet, F. Meylan, A. Sukhov, Holomorphic maps of algebraic CR manifolds, Internat. Math. Res. Notices 1 (1999), 1-29 Zbl0926.32044MR1666972
- B. Coupet, S. Pinchuk, A. Sukhov, On partial analyticity of CR mappings, Math. Z. 235 (2000), 541-557 Zbl0972.32008MR1800211
- B. Coupet, S. Pinchuk, A. Sukhov, Analyticité des applications CR, C.R. Acad. Sci. Paris, Sér. I Math. 329 (1999), 489-494 Zbl0949.32018MR1715137
- J.P. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, (1993), CRC Press, Boca Raton, FL Zbl0854.32001MR1224231
- S. Damour, Sur l'algébricité des applications holomorphes, C. R. Acad. Sci. Paris, Sér. I Math. 332 (2001), 491-496 Zbl1066.14509MR1834056
- S. Damour, On the analyticity of smooth CR mappings between real analytic CR manifolds, Michigan Math. J. 49 (2001), 583-603 Zbl0997.32033MR1872758
- M. Derridj, Le principe de réflexion en des points de faible pseudoconvexité pour des applications holomorphes propres, Invent. Math. 79 (1985), 197-215 Zbl0538.32009MR774535
- K. Diederich, J.E. Fornaess, Pseudoconvex domains with real analytic boundary, (1978), 371-384 Zbl0378.32014MR477153
- K. Diederich, J.E. Fornaess, Biholomorphic maps between certain real analytic domains in , Math. Ann. 245 (1979), 255-272 Zbl0418.32018MR553344
- K. Diederich, J.E. Fornaess, Biholomorphic mappings between two-dimensional Hartogs domains with real analytic boundaries, Recent Developments in Several Complex Variables 100 (1981), 133-150, Princeton University Press, Princeton N.J. Zbl0504.32011
- K. Diederich, J.E. Fornaess, Proper holomorphic mappings between real-analytic pseudoconvex domains in ., Math. Ann. 282 (1988), 681-700 Zbl0661.32025MR970228
- K. Diederich, J.E. Fornaess, Z. Ye, Biholomorphisms in dimension 2, J. Geom. Anal. 4 (1994), 539-552 Zbl0864.32014MR1305994
- K. Diederich, S. Pinchuk, Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J. 44 (1995), 1089-1126 Zbl0857.32015MR1386762
- K. Diederich, S. Pinchuk, Reflection principle in higher dimensions, ICM, Berlin, Doc. Math. Extra Vol. II (1998), 703-712 Zbl0914.32008
- K. Diederich, S.M. Webster, A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), 835-843 Zbl0451.32008MR596117
- F. Forstneric, Extending proper holomorphic mappings of positive codimension, Invent. Math. 95 (1989), 31-62 Zbl0633.32017MR969413
- C.K. Han, Analyticity of CR equivalences between some real analytic hypersurfaces in with degenerate Levi-forms, Invent. Math. 73 (1983), 51-69 Zbl0517.32007MR707348
- N. Hanges, F. Treves, Propagation of holomorphic extendability of CR functions, Math. Ann. 263 (1983), 157-177 Zbl0494.32004MR698000
- X. Huang, Schwarz reflection principle in complex spaces of dimension two, Comm. Partial Differential Equations 21 (1996), 1781-1828 Zbl0886.32010MR1421212
- X. Huang, J. Merker, F. Meylan, Mappings between degenerate real analytic hypersurfaces in , Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) 251 (2000), 321-338, Amer. Math. Soc., Providence, RI Zbl0967.32030
- B. Jöricke, Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Anal. 6 (1996), 555-611 Zbl0917.32007MR1601405
- H. Lewy, On the boundary behaviour of holomorphic mappings, Contrib. Centro Linceo Inter. Sc. Mat. e Loro Appl., Accad. Naz. Lincei 35 (1977)
- H. Maire, F. Meylan, Extension of smooth CR mappings between non-essentially finite hypersurfaces in , Ark. Math. 35 (1997), 185-199 Zbl0885.32017MR1443041
- B. Malgrange, Ideals of Differentiable Functions, No. 3 (1967), Oxford University Press, London Zbl0177.17902
- J. Merker, Global minimality of generic manifolds and holomorphic extendibility of CR functions, Internat. Math. Res. Notices (1994), approx. 14 p. (electronic) 329-342 Zbl0815.32007MR1289578
- J. Merker, On removable singularities for CR functions in higher codimension, Internat. Math. Res. Notices (1997), approx. 36 p. (electronic) 21-56 Zbl0880.32009MR1426732
- J. Merker, On the Schwarz symmetry principle in three-dimensional complex euclidean space, (1997)
- J. Merker, Vector field construction of Segre sets, (1998, augmented in 2000)
- J. Merker, On the partial algebraicity of holomorphic mappings between two real algebraic sets in the complex euclidean spaces of different dimensions, Bull. Soc. Math. France 129 (2001), 547-591 Zbl0998.32019MR1894150
- J. Merker, Étude de la régularité analytique de l'application de symétrie CR formelle, (June 2000)
- J. Merker, Convergence of formal invertible CR mappings between minimal holomorphically nondegenerate real analytic hypersurfaces, Int. J. Math. Math. Sci. 26 (2001), 281-302 Zbl1002.32029MR1854009
- J. Merker, Étude de la régularité analytique de l'application de symétrie CR formelle, C. R. Acad. Sci. Paris, Sér. I Math. 333 (2001), 165-168 Zbl0994.32028MR1851618
- J. Merker, F. Meylan, Extension de germes de difféomorphismes CR pour une classe d’hypersurfaces analytiques réelles non essentiellement finies dans , Complex variables Theory Appl. 40 (1999), 19-34 Zbl1025.32029MR1742868
- J. Merker, F. Meylan, On the Schwarz symmetry principle in a model case, Proc. Amer. Math. Soc. 127 (1999), 1097-1102 Zbl0919.32011MR1476379
- J. Merker, E. Porten, On removable singularities for integrable CR functions, Indiana Univ. Math. J. 48 (1999), 805-856 Zbl0935.32010MR1736977
- J. Merker, E. Porten, On wedge extendability of CR-meromorphic functions Zbl1026.32020MR1938701
- F. Meylan, The reflection principle in complex space, Indiana Univ. Math. J. 44 (1995), 783-796 Zbl0857.32007MR1375349
- N. Mir, An algebraic characterization of holomorphic nondegeneracy for real algebraic hypersurfaces and its application to CR mappings, Math. Z. 231 (1999), 189-202 Zbl0930.32020MR1696763
- N. Mir, Germs of holomorphic mappings between real algebraic hypersurfaces, Ann. Inst. Fourier 48 (1998), 1025-1043 Zbl0914.32009MR1656006
- N. Mir, On the convergence of formal mappings Zbl1008.32022MR1894140
- N. Mir, Formal biholomorphic maps of real analytic hypersurfaces, Math. Res. Letters 7 (2000), 2-3, 343-359 Zbl0964.32013MR1764327
- T.S. Neelon, On solutions of real analytic equations, Proc. Amer. Math. Soc. 125 (1997), 2531-2535 Zbl0890.32004MR1396991
- S. Pinchuk, A boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki 15 (1974), 205-212 Zbl0292.32002MR350065
- S. Pinchuk, On proper holomorphic mappings of strictly pseudoconvex domains (Russian), Sibirsk. Mat. Z. 15 (1974), 909-917 Zbl0303.32016
- S. Pinchuk, On the analytic continuation of holomorphic mappings (Russian), Mat. Sb. (N.S.) 98(140)-3(11) (1975), 375-392, 416-435, 495-496 Zbl0366.32010MR393562
- S. Pinchuk, Holomorphic mappings of real-analytic hypersurfaces (Russian), Mat. Sb. (N.S.) 105(147) (1978), 574-593, 640 Zbl0438.32009MR496595
- S. Pinchuk, K. Verma, Analytic sets and the boundary regularity of CR mappings, Proc. Amer. Math. Soc. 129 (2001), 2623-2632 Zbl0981.32024MR1838785
- E. Porten, Habilitationsschrift
- C. Rea, Prolongement holomorphe des fonctions CR, conditions suffisantes, C. R. Acad. Sci. Paris, Sér I Math. 297 (1983), 163-165 Zbl0568.32011MR725396
- R. Shafikov, Analytic continuation of germs of holomorphic mappings between real hypesurfaces in , Michigan Math. J. 47 (2000), 133-149 Zbl0966.32007MR1755261
- R. Sharipov, A. Sukhov, On CR mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions, Trans. Amer. Math. Soc. 348 (1996), 767-780 Zbl0851.32017MR1325920
- N. Stanton, Infinitesimal CR automorphisms of rigid hypersurfaces of the space of n complex variables, Amer. J. Math. 117 (1995), 141-167 Zbl0826.32013MR1314461
- N. Stanton, Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math. 118 (1996), 209-233 Zbl0849.32012MR1375306
- A. Sukhov, On the mapping problem for quadric Cauchy-Riemann manifolds, Indiana Univ. Math. J. 42 (1993), 27-36 Zbl0848.32016MR1218705
- A. Sukhov, On CR mappings of real quadric manifolds, Michigan Math. J. 41 (1994), 143-150 Zbl0821.32015MR1260615
- J.-M. Trépreau, Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe dans , Invent. Math. 83 (1986), 583-592 Zbl0586.32016MR827369
- J.-M. Trépreau, Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. Fr. 118 (1990), 403-450 Zbl0742.58053MR1090408
- J.-M. Trépreau, Holomorphic extension of CR functions: a survey, Partial differential equations and mathematical physics (Copenhagen, 1995; Lund 1995) 21 (1996), 333-355, Birkhäuser Boston, Boston, MA Zbl0851.32021
- A.E. Tumanov, Extending CR functions on a manifold of finite type over a wedge (Russian), Mat. Sb. (N.S.) 136(178) (1988), 128-139 Zbl0692.58005MR945904
- A.E. Tumanov, Connections and propagation of analyticity for CR functions, Duke Math. J. 73 (1994), 1-24 Zbl0801.32005MR1257276
- A.E. Tumanov, On the propagation of extendibility of CR functions, Complex analysis and geometry (Trento, 1993) 173 (1996), 479-498, Dekker, New York Zbl0849.32013
- K. Verma, Boundary regularity of correspondences in , Math. Z. 231 (1999), 253-299 Zbl0939.32014MR1703349
- S.M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53-68 Zbl0348.32005MR463482
- S.M. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26-28 Zbl0626.32019MR477138
- S.M. Webster, Holomorphic mappings of domains with generic corners, Proc. Amer. Math. Soc. 86 (1982), 236-240 Zbl0505.32014MR667281
- M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291 Zbl0172.05301MR232018
- R.A. Ajrapetyan, Extension of CR-functions from piecewise smooth CR manifolds, Math. USSR Sb. (English transl.) 62 (1989), 111-120 Zbl0663.32015MR912414
- A.E. Tumanov, Extending CR functions on a manifold of finite type over a wedge, Math. USSR Sb. 64 (1989), 129-140 Zbl0692.58005MR945904
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.