On the partial algebraicity of holomorphic mappings between two real algebraic sets
Bulletin de la Société Mathématique de France (2001)
- Volume: 129, Issue: 4, page 547-591
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topMerker, Joël. "On the partial algebraicity of holomorphic mappings between two real algebraic sets." Bulletin de la Société Mathématique de France 129.4 (2001): 547-591. <http://eudml.org/doc/272361>.
@article{Merker2001,
abstract = {The rigidity properties of the local invariants of real algebraic Cauchy-Riemann structures imposes upon holomorphic mappings some global rational properties (Poincaré 1907) or more generally algebraic ones (Webster 1977). Our principal goal will be to unify the classical or recent results in the subject, building on a study of the transcendence degree, to discuss also the usual assumption of minimality in the sense of Tumanov, in arbitrary dimension, without rank assumption and for holomorphic mappings between two arbitrary real algebraic sets.},
author = {Merker, Joël},
journal = {Bulletin de la Société Mathématique de France},
keywords = {local holomorphic mappings; real algebraic sets; transcendence degree; local algebraic foliations; minimality in the sense of Tumanov; Segre chains; Tumanov's minimality},
language = {eng},
number = {4},
pages = {547-591},
publisher = {Société mathématique de France},
title = {On the partial algebraicity of holomorphic mappings between two real algebraic sets},
url = {http://eudml.org/doc/272361},
volume = {129},
year = {2001},
}
TY - JOUR
AU - Merker, Joël
TI - On the partial algebraicity of holomorphic mappings between two real algebraic sets
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 4
SP - 547
EP - 591
AB - The rigidity properties of the local invariants of real algebraic Cauchy-Riemann structures imposes upon holomorphic mappings some global rational properties (Poincaré 1907) or more generally algebraic ones (Webster 1977). Our principal goal will be to unify the classical or recent results in the subject, building on a study of the transcendence degree, to discuss also the usual assumption of minimality in the sense of Tumanov, in arbitrary dimension, without rank assumption and for holomorphic mappings between two arbitrary real algebraic sets.
LA - eng
KW - local holomorphic mappings; real algebraic sets; transcendence degree; local algebraic foliations; minimality in the sense of Tumanov; Segre chains; Tumanov's minimality
UR - http://eudml.org/doc/272361
ER -
References
top- [1] M. Artin – « Algebraic approximation of structures over complete local rings », Inst. Hautes Études Sci. Publ. Math.36 (1969), p. 23–58. Zbl0181.48802MR268188
- [2] M. S. Baouendi, P. Ebenfelt & L. P. Rothschild – « Algebraicity of holomorphic mappings between real algebraic sets in », Acta Math. 177 (1996), no. 2, p. 225–273. Zbl0890.32005MR1440933
- [3] S. Bochner & W. Martin – « Several complex variables », Princeton Math. Ser., vol. 10, Princeton Univ. Press, Princeton, N.J., 1949. Zbl0041.05205MR27863
- [4] E. Chirka – « An introduction to the geometry of CR manifolds », Russian Math. Surveys 46 (1991), no. 1, p. 95–197. Zbl0742.32006MR1109037
- [5] B. Coupet, F. Meylan & A. Sukhov – « Holomorphic maps of algebraic CR manifolds », Int. Math. Research Notices1 (1999), p. 1–29. Zbl0926.32044MR1666972
- [6] B. Coupet, S. Pinchuk & A. Sukhov – « On the partial analyticity of CR mappings », Math. Z.235 (2000), p. 541–557. Zbl0972.32008MR1800211
- [7] S. Damour – « Sur l’algébricité des applications holomorphes », C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 6, p. 491–496. Zbl1066.14509MR1834056
- [8] X. Huang – « On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimension », Ann. Inst. Fourier Grenoble44 (1994), p. 433–463. Zbl0803.32011MR1296739
- [9] J. Merker – « Vector field construction of Segre sets », e-print : http://arxiv.org/abs/math.cv/9901010.
- [10] —, « Note on double reflection and algebraicity of holomorphic mappings », Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 4, p. 689–721. Zbl0998.32020MR1838145
- [11] J. Merker & F. Meylan – « On the Schwarz symmetry principle in a model case », Proc. Amer. Math. Soc.127 (1999), p. 1197–1102. Zbl0919.32011MR1476379
- [12] N. Mir – « Germs of holomorphic mappings between real algebraic hypersurfaces », Ann. Inst. Fourier Grenoble48 (1998), p. 1025–1043. Zbl0914.32009MR1656006
- [13] S. Pinchuk – « CR transformations of real manifolds in », Indiana University Math. J.41 (1992), p. 1–16. Zbl0766.32021MR1160899
- [14] R. Sharipov & A. Sukhov – « On CR mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions », Trans. Amer. Math. Soc.348 (1996), p. 767–780. Zbl0851.32017MR1325920
- [15] N. Stanton – « Infinitesimal CR automorphisms of real hypersurfaces », Amer. J. Math.118 (1996), p. 209–233. Zbl0849.32012MR1375306
- [16] A. Sukhov – « On the mapping problem for quadric Cauchy-Riemann manifolds », Indiana Univ. Math. J.42 (1993), p. 27–32. Zbl0848.32016MR1218705
- [17] H. J. Sussmann – « Orbits of families of vector fields and integrability of distributions », Trans. Amer. Math. Soc.180 (1973), p. 171–188. Zbl0274.58002MR321133
- [18] S. M. Webster – « On the mapping problem for algebraic real hypersurfaces », Invent. Math. 43-1 (1977), p. 53–68. Zbl0348.32005MR463482
- [19] D. Zaitsev – « Algebraicity of local holomorphisms between real algebraic submanifolds in complex spaces », Acta Math.183 (1999), p. 273–305. Zbl1005.32014MR1738046
Citations in EuDML Documents
top- Rasul Shafikov, Kausha Verma, Extension of holomorphic maps between real hypersurfaces of different dimension
- Joël Merker, On envelopes of holomorphy of domains covered by Levi-flat hats and the reflection principle
- Joël Merker, Étude de la régularité analytique de l'application de réflexion CR formelle
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.