Tame semiflows for piecewise linear vector fields
- [1] Universidade de São Paulo, Dep. Matemática Aplicada, Rua do Matao, 1010, São Paulo 05508-090 (Brésil)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 6, page 1593-1628
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPanazzolo, Daniel. "Tame semiflows for piecewise linear vector fields." Annales de l’institut Fourier 52.6 (2002): 1593-1628. <http://eudml.org/doc/116021>.
@article{Panazzolo2002,
abstract = {Let $\{\mathcal \{E\}\}$ be a disjoint decomposition of $\{\mathbb \{R\}\}^n$ and let $X$ be a vector field
on $\{\mathbb \{R\}\}^n$, defined to be linear on each cell of the decomposition $\{\mathcal \{E\}\}$. Under
some natural assumptions, we show how to associate a semiflow to $X$ and prove that such
semiflow belongs to the o-minimal structure $\{\mathbb \{R\}\}_\{\{\rm an\},\exp \}$. In particular,
when $X$ is a continuous vector field and $\Gamma $ is an invariant subset of $X$,
our result implies that if $\Gamma $ is non-spiralling then the Poincaré first
return map associated $\Gamma $ is also in $\{\mathbb \{R\}\}_\{\{\rm an\} ,\exp \}$.},
affiliation = {Universidade de São Paulo, Dep. Matemática Aplicada, Rua do Matao, 1010, São Paulo 05508-090 (Brésil)},
author = {Panazzolo, Daniel},
journal = {Annales de l’institut Fourier},
keywords = {piecewise linear vector field; o-minimal; semiflow; o-minimal structure},
language = {eng},
number = {6},
pages = {1593-1628},
publisher = {Association des Annales de l'Institut Fourier},
title = {Tame semiflows for piecewise linear vector fields},
url = {http://eudml.org/doc/116021},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Panazzolo, Daniel
TI - Tame semiflows for piecewise linear vector fields
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1593
EP - 1628
AB - Let ${\mathcal {E}}$ be a disjoint decomposition of ${\mathbb {R}}^n$ and let $X$ be a vector field
on ${\mathbb {R}}^n$, defined to be linear on each cell of the decomposition ${\mathcal {E}}$. Under
some natural assumptions, we show how to associate a semiflow to $X$ and prove that such
semiflow belongs to the o-minimal structure ${\mathbb {R}}_{{\rm an},\exp }$. In particular,
when $X$ is a continuous vector field and $\Gamma $ is an invariant subset of $X$,
our result implies that if $\Gamma $ is non-spiralling then the Poincaré first
return map associated $\Gamma $ is also in ${\mathbb {R}}_{{\rm an} ,\exp }$.
LA - eng
KW - piecewise linear vector field; o-minimal; semiflow; o-minimal structure
UR - http://eudml.org/doc/116021
ER -
References
top- Arnold V.I., Ordinary Differential Equations, (1984), Moscow
- Arneodo A., Coullet P., Tresser C., Oscillators with chaotic behavior: an illustration of a theorem by Shilnikov, J. Statist. Phys. 27 (1982), 171-182 Zbl0522.58033MR656874
- Bhatia N.P., Hajek O., Local Semi-Dynamical Systems, Lecture Note in Math. 90 (1969) Zbl0176.39102MR251328
- Benedetti R., Risler J.-J., Real Algebraic and semi-algebraic sets, (1990), Hermann, Paris Zbl0694.14006MR1070358
- van den Dries L., Tame Topology and O-minimal Structures, (1998), Cambridge University Press Zbl0953.03045MR1633348
- van den Dries L., Macintyre A., Marker D., The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. 140 (1994), 183-205 Zbl0837.12006MR1289495
- Filippov A.F., Differential equations with discontinuous right-hand side, Mat. Sb. (N.S., Russian) 51 (1960), 99-128 Zbl0138.32204MR114016
- Fulmer EP., Computation of the Matrix Exponential, Amer. Math. Monthly 82 (1975), 156-159 Zbl0311.15006MR361241
- Hájek O., Discontinuous Differential Equations I, J. Diff. Eq. 32 (1979), 149-170 Zbl0365.34017MR534546
- Hirsch M., Differential Topology, (1976), Springer-Verlag Zbl0356.57001MR448362
- Kaloshin V., The Hilbert 16th Problem and an Estimate for Cyclicity of an Elementary Polycycle Zbl1087.34013
- Khovanskii A.G., Fewnomials, AMS Translations of Mathematical Monographs 88 Zbl0728.12002MR1108621
- Lion J.-M., Rolin J.-P., Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier 47 (1997), 859-884 Zbl0873.32004MR1465789
- Maxwell S., A general model completeness result for expansions of the real ordered field, Ann. Pure Appl. Logic 95 (1998), 185-227 Zbl0972.03040MR1650659
- Moussu R., Roche C., Théorie de Hovanskii et problème de Dulac, Invent. Math. 105 (1991), 431-441 Zbl0769.58050MR1115550
- Shilnikov L., Chua's circuit: rigorous results and future problems, Internat. J. Bifur. Chaos 4 (1994), 489-519 MR1298073
- Wilkie A.J., Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094 Zbl0892.03013MR1398816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.