Tame semiflows for piecewise linear vector fields

Daniel Panazzolo[1]

  • [1] Universidade de São Paulo, Dep. Matemática Aplicada, Rua do Matao, 1010, São Paulo 05508-090 (Brésil)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 6, page 1593-1628
  • ISSN: 0373-0956

Abstract

top
Let be a disjoint decomposition of n and let X be a vector field on n , defined to be linear on each cell of the decomposition . Under some natural assumptions, we show how to associate a semiflow to X and prove that such semiflow belongs to the o-minimal structure an , exp . In particular, when X is a continuous vector field and Γ is an invariant subset of X , our result implies that if Γ is non-spiralling then the Poincaré first return map associated Γ is also in an , exp .

How to cite

top

Panazzolo, Daniel. "Tame semiflows for piecewise linear vector fields." Annales de l’institut Fourier 52.6 (2002): 1593-1628. <http://eudml.org/doc/116021>.

@article{Panazzolo2002,
abstract = {Let $\{\mathcal \{E\}\}$ be a disjoint decomposition of $\{\mathbb \{R\}\}^n$ and let $X$ be a vector field on $\{\mathbb \{R\}\}^n$, defined to be linear on each cell of the decomposition $\{\mathcal \{E\}\}$. Under some natural assumptions, we show how to associate a semiflow to $X$ and prove that such semiflow belongs to the o-minimal structure $\{\mathbb \{R\}\}_\{\{\rm an\},\exp \}$. In particular, when $X$ is a continuous vector field and $\Gamma $ is an invariant subset of $X$, our result implies that if $\Gamma $ is non-spiralling then the Poincaré first return map associated $\Gamma $ is also in $\{\mathbb \{R\}\}_\{\{\rm an\} ,\exp \}$.},
affiliation = {Universidade de São Paulo, Dep. Matemática Aplicada, Rua do Matao, 1010, São Paulo 05508-090 (Brésil)},
author = {Panazzolo, Daniel},
journal = {Annales de l’institut Fourier},
keywords = {piecewise linear vector field; o-minimal; semiflow; o-minimal structure},
language = {eng},
number = {6},
pages = {1593-1628},
publisher = {Association des Annales de l'Institut Fourier},
title = {Tame semiflows for piecewise linear vector fields},
url = {http://eudml.org/doc/116021},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Panazzolo, Daniel
TI - Tame semiflows for piecewise linear vector fields
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1593
EP - 1628
AB - Let ${\mathcal {E}}$ be a disjoint decomposition of ${\mathbb {R}}^n$ and let $X$ be a vector field on ${\mathbb {R}}^n$, defined to be linear on each cell of the decomposition ${\mathcal {E}}$. Under some natural assumptions, we show how to associate a semiflow to $X$ and prove that such semiflow belongs to the o-minimal structure ${\mathbb {R}}_{{\rm an},\exp }$. In particular, when $X$ is a continuous vector field and $\Gamma $ is an invariant subset of $X$, our result implies that if $\Gamma $ is non-spiralling then the Poincaré first return map associated $\Gamma $ is also in ${\mathbb {R}}_{{\rm an} ,\exp }$.
LA - eng
KW - piecewise linear vector field; o-minimal; semiflow; o-minimal structure
UR - http://eudml.org/doc/116021
ER -

References

top
  1. Arnold V.I., Ordinary Differential Equations, (1984), Moscow 
  2. Arneodo A., Coullet P., Tresser C., Oscillators with chaotic behavior: an illustration of a theorem by Shilnikov, J. Statist. Phys. 27 (1982), 171-182 Zbl0522.58033MR656874
  3. Bhatia N.P., Hajek O., Local Semi-Dynamical Systems, Lecture Note in Math. 90 (1969) Zbl0176.39102MR251328
  4. Benedetti R., Risler J.-J., Real Algebraic and semi-algebraic sets, (1990), Hermann, Paris Zbl0694.14006MR1070358
  5. van den Dries L., Tame Topology and O-minimal Structures, (1998), Cambridge University Press Zbl0953.03045MR1633348
  6. van den Dries L., Macintyre A., Marker D., The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. 140 (1994), 183-205 Zbl0837.12006MR1289495
  7. Filippov A.F., Differential equations with discontinuous right-hand side, Mat. Sb. (N.S., Russian) 51 (1960), 99-128 Zbl0138.32204MR114016
  8. Fulmer EP., Computation of the Matrix Exponential, Amer. Math. Monthly 82 (1975), 156-159 Zbl0311.15006MR361241
  9. Hájek O., Discontinuous Differential Equations I, J. Diff. Eq. 32 (1979), 149-170 Zbl0365.34017MR534546
  10. Hirsch M., Differential Topology, (1976), Springer-Verlag Zbl0356.57001MR448362
  11. Kaloshin V., The Hilbert 16th Problem and an Estimate for Cyclicity of an Elementary Polycycle Zbl1087.34013
  12. Khovanskii A.G., Fewnomials, AMS Translations of Mathematical Monographs 88 Zbl0728.12002MR1108621
  13. Lion J.-M., Rolin J.-P., Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier 47 (1997), 859-884 Zbl0873.32004MR1465789
  14. Maxwell S., A general model completeness result for expansions of the real ordered field, Ann. Pure Appl. Logic 95 (1998), 185-227 Zbl0972.03040MR1650659
  15. Moussu R., Roche C., Théorie de Hovanskii et problème de Dulac, Invent. Math. 105 (1991), 431-441 Zbl0769.58050MR1115550
  16. Shilnikov L., Chua's circuit: rigorous results and future problems, Internat. J. Bifur. Chaos 4 (1994), 489-519 MR1298073
  17. Wilkie A.J., Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc. 9 (1996), 1051-1094 Zbl0892.03013MR1398816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.