Abelian simply transitive affine groups of symplectic type
Oliver Baues[1]; Vicente Cortés[2]
- [1] ETH-Zürich, Departement Mathematik, Rämistrasse 101, Ch-8092 Zürich
- [2] Université de Nancy I, Institut Élie Cartan, BP 239 54506 Vandoeuvre-les-Nancy Cedex (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 6, page 1729-1751
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBaues, Oliver, and Cortés, Vicente. "Abelian simply transitive affine groups of symplectic type." Annales de l’institut Fourier 52.6 (2002): 1729-1751. <http://eudml.org/doc/116025>.
@article{Baues2002,
abstract = {The set of all Abelian simply transitive subgroups of the affine group naturally
corresponds to the set of real solutions of a system of algebraic equations. We classify
all simply transitive subgroups of the symplectic affine group by constructing a model
space for the corresponding variety of solutions. Similarly, we classify the
complete global model spaces for flat special Kähler manifolds with a constant cubic form.},
affiliation = {ETH-Zürich, Departement Mathematik, Rämistrasse 101, Ch-8092 Zürich; Université de Nancy I, Institut Élie Cartan, BP 239 54506 Vandoeuvre-les-Nancy Cedex (France)},
author = {Baues, Oliver, Cortés, Vicente},
journal = {Annales de l’institut Fourier},
keywords = {affine transformations; flat symplectic connections; special Kähler manifolds; affine groups of symplectic type; affine transformation; special Kaehler manifolds},
language = {eng},
number = {6},
pages = {1729-1751},
publisher = {Association des Annales de l'Institut Fourier},
title = {Abelian simply transitive affine groups of symplectic type},
url = {http://eudml.org/doc/116025},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Baues, Oliver
AU - Cortés, Vicente
TI - Abelian simply transitive affine groups of symplectic type
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1729
EP - 1751
AB - The set of all Abelian simply transitive subgroups of the affine group naturally
corresponds to the set of real solutions of a system of algebraic equations. We classify
all simply transitive subgroups of the symplectic affine group by constructing a model
space for the corresponding variety of solutions. Similarly, we classify the
complete global model spaces for flat special Kähler manifolds with a constant cubic form.
LA - eng
KW - affine transformations; flat symplectic connections; special Kähler manifolds; affine groups of symplectic type; affine transformation; special Kaehler manifolds
UR - http://eudml.org/doc/116025
ER -
References
top- L. Auslander, Simply Transitive Groups of Affine Motions, Amer. J. Math 99 (1977), 809-826 Zbl0357.22006MR447470
- D. V. Alekseevsky, V. Cortés, C. Devchand, Special complex manifolds, J. Geom. Phys 42 (2002), 85-105 Zbl1004.53038MR1894078
- O. Baues, V. Cortés, Realisation of special Kähler manifolds as parabolic spheres, Proc. Amer. Math. Soc 129 (2001), 2403-2407 Zbl1031.53020MR1823925
- E. Calabi, Improper affine hypersurfaces of convex type and a generalization of a theorem of Jörgens, Michigan Math. J 5 (1958), 105-126 Zbl0113.30104MR106487
- B. Dubrovin, Geometry of topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer Zbl0841.58065
- K. Dekimpe, V. Ongenae, On the number of abelian left symmetric algebras, Proc. Amer. Math. Soc 128 (2000), 3191-3200 Zbl0953.17001MR1695151
- D. S. Freed, Special Kähler manifolds, Commun. Math. Phys 203 (1999), 31-52 Zbl0940.53040MR1695113
- D. Fried, W. Goldman, M.W. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helv 56 (1981), 487-523 Zbl0516.57014MR656210
- S. Kobayashi, Transformation groups in differential geometry, (1972), Springer-Verlag Zbl0246.53031MR355886
- Z. Lu, A note on special Kähler manifolds, Math. Ann 313 (1999), 711-713 Zbl1021.53046MR1686939
- K. Nomizu, T. Sasaki, Affine differential geometry. Geometry of affine immersions, 111 (1994), Cambridge University Press, Cambridge Zbl0834.53002MR1311248
- D. Segal, The structure of complete left-symmetric algebras, Math. Ann 293 (1992), 569-578 Zbl0766.17005MR1170527
- L. Vrancken, A. M. Li, U. Simon, Affine spheres with constant affine sectional curvature, Math. Z 206 (1991), 651-658 Zbl0721.53014MR1100847
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.