Abelian simply transitive affine groups of symplectic type

Oliver Baues[1]; Vicente Cortés[2]

  • [1] ETH-Zürich, Departement Mathematik, Rämistrasse 101, Ch-8092 Zürich
  • [2] Université de Nancy I, Institut Élie Cartan, BP 239 54506 Vandoeuvre-les-Nancy Cedex (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 6, page 1729-1751
  • ISSN: 0373-0956

Abstract

top
The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. Similarly, we classify the complete global model spaces for flat special Kähler manifolds with a constant cubic form.

How to cite

top

Baues, Oliver, and Cortés, Vicente. "Abelian simply transitive affine groups of symplectic type." Annales de l’institut Fourier 52.6 (2002): 1729-1751. <http://eudml.org/doc/116025>.

@article{Baues2002,
abstract = {The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. Similarly, we classify the complete global model spaces for flat special Kähler manifolds with a constant cubic form.},
affiliation = {ETH-Zürich, Departement Mathematik, Rämistrasse 101, Ch-8092 Zürich; Université de Nancy I, Institut Élie Cartan, BP 239 54506 Vandoeuvre-les-Nancy Cedex (France)},
author = {Baues, Oliver, Cortés, Vicente},
journal = {Annales de l’institut Fourier},
keywords = {affine transformations; flat symplectic connections; special Kähler manifolds; affine groups of symplectic type; affine transformation; special Kaehler manifolds},
language = {eng},
number = {6},
pages = {1729-1751},
publisher = {Association des Annales de l'Institut Fourier},
title = {Abelian simply transitive affine groups of symplectic type},
url = {http://eudml.org/doc/116025},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Baues, Oliver
AU - Cortés, Vicente
TI - Abelian simply transitive affine groups of symplectic type
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1729
EP - 1751
AB - The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. Similarly, we classify the complete global model spaces for flat special Kähler manifolds with a constant cubic form.
LA - eng
KW - affine transformations; flat symplectic connections; special Kähler manifolds; affine groups of symplectic type; affine transformation; special Kaehler manifolds
UR - http://eudml.org/doc/116025
ER -

References

top
  1. L. Auslander, Simply Transitive Groups of Affine Motions, Amer. J. Math 99 (1977), 809-826 Zbl0357.22006MR447470
  2. D. V. Alekseevsky, V. Cortés, C. Devchand, Special complex manifolds, J. Geom. Phys 42 (2002), 85-105 Zbl1004.53038MR1894078
  3. O. Baues, V. Cortés, Realisation of special Kähler manifolds as parabolic spheres, Proc. Amer. Math. Soc 129 (2001), 2403-2407 Zbl1031.53020MR1823925
  4. E. Calabi, Improper affine hypersurfaces of convex type and a generalization of a theorem of Jörgens, Michigan Math. J 5 (1958), 105-126 Zbl0113.30104MR106487
  5. B. Dubrovin, Geometry of 2 D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993) 1620 (1996), 120-348, Springer Zbl0841.58065
  6. K. Dekimpe, V. Ongenae, On the number of abelian left symmetric algebras, Proc. Amer. Math. Soc 128 (2000), 3191-3200 Zbl0953.17001MR1695151
  7. D. S. Freed, Special Kähler manifolds, Commun. Math. Phys 203 (1999), 31-52 Zbl0940.53040MR1695113
  8. D. Fried, W. Goldman, M.W. Hirsch, Affine manifolds with nilpotent holonomy, Comment. Math. Helv 56 (1981), 487-523 Zbl0516.57014MR656210
  9. S. Kobayashi, Transformation groups in differential geometry, (1972), Springer-Verlag Zbl0246.53031MR355886
  10. Z. Lu, A note on special Kähler manifolds, Math. Ann 313 (1999), 711-713 Zbl1021.53046MR1686939
  11. K. Nomizu, T. Sasaki, Affine differential geometry. Geometry of affine immersions, 111 (1994), Cambridge University Press, Cambridge Zbl0834.53002MR1311248
  12. D. Segal, The structure of complete left-symmetric algebras, Math. Ann 293 (1992), 569-578 Zbl0766.17005MR1170527
  13. L. Vrancken, A. M. Li, U. Simon, Affine spheres with constant affine sectional curvature, Math. Z 206 (1991), 651-658 Zbl0721.53014MR1100847

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.