Page 1 Next

Displaying 1 – 20 of 244

Showing per page

A Paley-Wiener theorem on NA harmonic spaces

Francesca Astengo, Bianca di Blasio (1999)

Colloquium Mathematicae

Let N be an H-type group and consider its one-dimensional solvable extension NA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley-Wiener theorem for nonradial functions on NA supported in a set whose boundary is a horocycle of the form Na, a ∈ A.

Abelian simply transitive affine groups of symplectic type

Oliver Baues, Vicente Cortés (2002)

Annales de l’institut Fourier

The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. Similarly, we classify the complete global model spaces for flat special Kähler manifolds with a constant cubic form.

An analogue of Hardy's theorem for the Heisenberg group

S. Thangavelu (2001)

Colloquium Mathematicae

We observe that the classical theorem of Hardy on Fourier transform pairs can be reformulated in terms of the heat kernel associated with the Laplacian on the Euclidean space. This leads to an interesting version of Hardy's theorem for the sublaplacian on the Heisenberg group. We also consider certain Rockland operators on the Heisenberg group and Schrödinger operators on ℝⁿ related to them.

An extension of Mahler's theorem to simply connected nilpotent groups

Martin Moskowitz (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Note gives an extension of Mahler's theorem on lattices in R n to simply connected nilpotent groups with a Q -structure. From this one gets an application to groups of Heisenberg type and a generalization of Hermite's inequality.

An extention of Nomizu’s Theorem –A user’s guide–

Hisashi Kasuya (2016)

Complex Manifolds

For a simply connected solvable Lie group G with a lattice Γ, the author constructed an explicit finite-dimensional differential graded algebra A*Γ which computes the complex valued de Rham cohomology H*(Γ, C) of the solvmanifold Γ. In this note, we give a quick introduction to the construction of such A*Γ including a simple proof of H*(A*Γ) ≅ H*(Γ, C).

Currently displaying 1 – 20 of 244

Page 1 Next