Liouville type theorems for mappings with bounded (co)-distortion

Marc Troyanov[1]; Sergei Vodop'yanov[2]

  • [1] EPFL, Institut de Mathématiques, CH-1015 Lausanne
  • [2] Sobolev Institute of Mathematics, Novosibirsk 630090 (Russie)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 6, page 1753-1784
  • ISSN: 0373-0956

Abstract

top
We obtain Liouville type theorems for mappings with bounded s -distorsion between Riemannian manifolds. Besides these mappings, we introduce and study a new class, which we call mappings with bounded q -codistorsion.

How to cite

top

Troyanov, Marc, and Vodop'yanov, Sergei. "Liouville type theorems for mappings with bounded (co)-distortion." Annales de l’institut Fourier 52.6 (2002): 1753-1784. <http://eudml.org/doc/116026>.

@article{Troyanov2002,
abstract = {We obtain Liouville type theorems for mappings with bounded $s$-distorsion between Riemannian manifolds. Besides these mappings, we introduce and study a new class, which we call mappings with bounded $q$-codistorsion.},
affiliation = {EPFL, Institut de Mathématiques, CH-1015 Lausanne; Sobolev Institute of Mathematics, Novosibirsk 630090 (Russie)},
author = {Troyanov, Marc, Vodop'yanov, Sergei},
journal = {Annales de l’institut Fourier},
keywords = {mapping with bounded distortion; capacity; parabolicity; Riemannian manifolds; Liouville type theorem},
language = {eng},
number = {6},
pages = {1753-1784},
publisher = {Association des Annales de l'Institut Fourier},
title = {Liouville type theorems for mappings with bounded (co)-distortion},
url = {http://eudml.org/doc/116026},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Troyanov, Marc
AU - Vodop'yanov, Sergei
TI - Liouville type theorems for mappings with bounded (co)-distortion
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1753
EP - 1784
AB - We obtain Liouville type theorems for mappings with bounded $s$-distorsion between Riemannian manifolds. Besides these mappings, we introduce and study a new class, which we call mappings with bounded $q$-codistorsion.
LA - eng
KW - mapping with bounded distortion; capacity; parabolicity; Riemannian manifolds; Liouville type theorem
UR - http://eudml.org/doc/116026
ER -

References

top
  1. M. Chamberland, G. Meister, A Mountain Pass to the Jacobian Conjecture, Canad. Math. Bull Vol. 41 (1998), 442-451 Zbl0947.14030MR1658243
  2. V. M. Chernikov, S. K. Vodop'yanov, Sobolev Spaces and Hypoelliptic Equations, II, Siberian Advances in Mathematics 6 (1996), 64-96 Zbl0925.46011MR1469044
  3. T. Coulhon, I. Holopainen, L. Saloff-Coste, Harnack Inequality and hyperbolicity for subelliptic p -Laplacians with applications to Picard type theorems, Geom. Funct. Anal 11 (2001), 1139-1191 Zbl1005.58013MR1878317
  4. L. C. Evans, R. F. Gariepy, Measure Theory and Fine properties of Functions, (1992), CRC press Zbl0804.28001MR1158660
  5. H. Federer, Geometric Measure Theory, Grundlehren der Mathematik 153 (1969) Zbl0176.00801MR257325
  6. J. Lelong-Ferrand, Étude d'une classe d'applications liées à des homomorphismes d'algèbres de fonctions et généralisant les quasi-conformes, Duke Math. J 40 (1973), 163-186 Zbl0272.30025MR315628
  7. K. Gafaïti, Algèbre de Royden et Homéomorphismes p -dilatation bornée entre espaces métriques mesurés, (2001) 
  8. V. Gol'dshtein, L. Gurov, A. Romanov, Homeomorphisms that induce Monomorphisms of Sobolev Spaces, Israel J. of Math 91 (1995), 31-60 Zbl0836.46021MR1348304
  9. V. Gol'dshtein, M. Troyanov, The Kelvin-Nevanlinna-Royden criterion for p-parabolicity, Math. Zeitschrift 232 (1999), 607-619 Zbl0939.31011MR1727544
  10. A. Grigor'yan, Analytic and Geometric Background of Recurence and Non-Explosion of the Brownian Motion on Riemannian Manifolds, Bull. Amer. Math. Soc 36 (1999), 135-242 Zbl0927.58019MR1659871
  11. P. Hajlasz, Change of Variables Formula under Minimal Assumptions, Colloquium Mathematicum 64 (1993), 93-101 Zbl0840.26009MR1201446
  12. J. Heinonen, T. Kilpeläinen, O. Martio, Non Linear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs (1993) Zbl0780.31001MR1207810
  13. J. Heinonen, P. Koskela, Sobolev Mappings with Integrable Dilatation, Arch. Rational Mech.Anal 125 (1993), 81-97 Zbl0792.30016MR1241287
  14. I. Holopainen, Non linear Potential Theory and Quasiregular Mappings on Riemannian Manifolds, Annales Academiae Scientiarum Fennicae Series A 74 (1990) Zbl0698.31010MR1052971
  15. I. Holopainen, Rough isometries and p-harmonic functions with finite Dirichlet integral, Revista Mathemática Iberoamericana 10 (1994), 143-175 Zbl0797.31008MR1271760
  16. T. Iwaniec, P. Koskela, J. Onninen, Mappings of finite distortion: Monotonicity and continuity Zbl1006.30016MR1833892
  17. M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan 38 (1986), 227-238 Zbl0577.53031MR833199
  18. J. Kauhanen, P. Koskela, J. Malỳ, Mappings of finite distortion: discreteness and openess, (2000) Zbl0998.30024MR1864838
  19. J. Maly, Absolutely continuous functions of several variables, J. Math. Anal. Appl 231 (1999), 492-508 Zbl0924.26008MR1669167
  20. J. Maly, O. Martio, Lusin’s condition N and mappings of the class W 1 , n , J. Reine Angew. Math 458 (1995), 19-36 Zbl0812.30007MR1310951
  21. J. J. Manfredi, E. Villamor, An extension of Reshetnyak's theorem, Indiana Univ. Math. J 47 (1998), 1131-1145 Zbl0931.30014MR1665761
  22. O. Martio, S. Rickman, J. Väisälä, Definitions for Quasiregular Mappings, Ann. Acad. Sc. Fenn 448 (1969), 5-40 Zbl0189.09204MR259114
  23. O. Martio, W. P. Ziemer, Lusin's condition (N) and mappings of non negative Jacobian, Michigan. Math. J 39 (1992), 495-508 Zbl0807.46032MR1182504
  24. V.G. Maz'ya, Sobolev Spaces, (1985), Springer Verlag Zbl0692.46023MR817985
  25. V. Maz'ya, T. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, (1985), Pitman MR881055
  26. S. Müller, T. Qi, B.S. Yan, On a new class of elastic deformations not allowing for cavitation, Ann. Inst. Henri Poincaré 11 (1994), 217-243 Zbl0863.49002MR1267368
  27. S. Müller, S. Spector, An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal. 131 (1995), 1-66 Zbl0836.73025MR1346364
  28. P. Pansu, Difféomorphismes de p-dilatation bornées, Ann. Acad. Sc. Fenn 223 (1997), 475-506 Zbl0890.22005MR1469804
  29. P. Pansu, Cohomologie L p , espaces homogènes et pincement, (1999) 
  30. M. Reiman, Über harmonishe Kapazität und quasikonforme Abbildungen in Raum., Comm. Math. Helv 44 (1969), 284-307 Zbl0176.03504MR252637
  31. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Translation of Math. Monographs 73 (1989) Zbl0667.30018MR994644
  32. Yu. G. Reshetnyak, Mappings with bounded distortion as extremals of integrals of Dirichlet type, Siberian Math. Journal 9 (1968), 652-666 Zbl0162.38202MR230900
  33. Yu. G. Reshetnyak, Sobolev classes of functions with values in a metric space, Siberian Math. Journal 38 (1997), 657-675 Zbl0944.46024MR1457485
  34. S. Rickman, Quasi-regular Mappings, 26 (1993), Springer Zbl0816.30017
  35. S. Rickman, Topics in the Theory of Quasi-regular Mappings, E 12 (1988) Zbl0658.30015
  36. C. J. Titus, G. S. Young, The extension of interiority, with some applications, Trans. Amer. Math. Soc 103 (1962), 329-340 Zbl0113.38001MR137103
  37. M. Troyanov, Parabolicity of Manifolds, Siberian Adv. Math 9 (1999), 1-25 Zbl0991.31008MR1749853
  38. S. K. Vodop'yanov, Taylor Formula and Function Spaces (in Russian), Novosibirsk University (1988) Zbl0709.46009MR996639
  39. S. K. Vodop'yanov, Geometric Properties of Function Spaces (in Russian), (1992) 
  40. S. K. Vodop'yanov, Monotone Functions and Quaiconformal Mappings on Carnot Groups, Siberian Math. J 37 (1996), 1269-1295 Zbl0876.30020MR1440383
  41. S. K. Vodop'yanov, Topological and Geometric Properties of Mappings of Sobolev Spaces with Integrable Jacobian I, Siberian Math. J 41 (2000), 23-48 Zbl0983.30009MR1756474
  42. S. K. Vodop'yanov, Mappings with Bounded Distortion and with Finite Distortion on Carnot Groups, Siberian Math. J 40 (1999), 764-804 Zbl0973.30021MR1721674
  43. S. Vodop'yanov, V. Gol'dshtein, Quasi-conformal mapping and spaces of functions with generalized first derivatives, Siberian Math. J 17 (1977), 515-531 Zbl0353.30019
  44. S. Vodop'yanov, A. Ukhlov, Sobolev Spaces and (P,Q)-Quasiconformal Mappings of Carnot Groups, Siberian Math. J 39 (1998), 665-682 Zbl0917.46023MR1654140
  45. V. A. Zorich, V. M. Kesel'man, On the Conformal Type of a Riemannian Manifold, Func. Anal. and Appl 30 (1996), 106-117 Zbl0873.53025MR1402080
  46. V. A. Zorich, A theorem of M.A. Lavrent'ev on quasiconformal space maps, Mat.Sb. 74 (1967), 417-433 Zbl0181.08701
  47. V. A. Zorich, A theorem of M.A. Lavrent'ev on quasiconformal space maps, Math. USSR Sb. (English transl.) 3 (1967) Zbl0184.10801

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.