Liouville type theorems for mappings with bounded (co)-distortion
Marc Troyanov[1]; Sergei Vodop'yanov[2]
- [1] EPFL, Institut de Mathématiques, CH-1015 Lausanne
- [2] Sobolev Institute of Mathematics, Novosibirsk 630090 (Russie)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 6, page 1753-1784
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTroyanov, Marc, and Vodop'yanov, Sergei. "Liouville type theorems for mappings with bounded (co)-distortion." Annales de l’institut Fourier 52.6 (2002): 1753-1784. <http://eudml.org/doc/116026>.
@article{Troyanov2002,
abstract = {We obtain Liouville type theorems for mappings with bounded $s$-distorsion between
Riemannian manifolds. Besides these mappings, we introduce and study a new class, which
we call mappings with bounded $q$-codistorsion.},
affiliation = {EPFL, Institut de Mathématiques, CH-1015 Lausanne; Sobolev Institute of Mathematics, Novosibirsk 630090 (Russie)},
author = {Troyanov, Marc, Vodop'yanov, Sergei},
journal = {Annales de l’institut Fourier},
keywords = {mapping with bounded distortion; capacity; parabolicity; Riemannian manifolds; Liouville type theorem},
language = {eng},
number = {6},
pages = {1753-1784},
publisher = {Association des Annales de l'Institut Fourier},
title = {Liouville type theorems for mappings with bounded (co)-distortion},
url = {http://eudml.org/doc/116026},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Troyanov, Marc
AU - Vodop'yanov, Sergei
TI - Liouville type theorems for mappings with bounded (co)-distortion
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1753
EP - 1784
AB - We obtain Liouville type theorems for mappings with bounded $s$-distorsion between
Riemannian manifolds. Besides these mappings, we introduce and study a new class, which
we call mappings with bounded $q$-codistorsion.
LA - eng
KW - mapping with bounded distortion; capacity; parabolicity; Riemannian manifolds; Liouville type theorem
UR - http://eudml.org/doc/116026
ER -
References
top- M. Chamberland, G. Meister, A Mountain Pass to the Jacobian Conjecture, Canad. Math. Bull Vol. 41 (1998), 442-451 Zbl0947.14030MR1658243
- V. M. Chernikov, S. K. Vodop'yanov, Sobolev Spaces and Hypoelliptic Equations, II, Siberian Advances in Mathematics 6 (1996), 64-96 Zbl0925.46011MR1469044
- T. Coulhon, I. Holopainen, L. Saloff-Coste, Harnack Inequality and hyperbolicity for subelliptic -Laplacians with applications to Picard type theorems, Geom. Funct. Anal 11 (2001), 1139-1191 Zbl1005.58013MR1878317
- L. C. Evans, R. F. Gariepy, Measure Theory and Fine properties of Functions, (1992), CRC press Zbl0804.28001MR1158660
- H. Federer, Geometric Measure Theory, Grundlehren der Mathematik 153 (1969) Zbl0176.00801MR257325
- J. Lelong-Ferrand, Étude d'une classe d'applications liées à des homomorphismes d'algèbres de fonctions et généralisant les quasi-conformes, Duke Math. J 40 (1973), 163-186 Zbl0272.30025MR315628
- K. Gafaïti, Algèbre de Royden et Homéomorphismes -dilatation bornée entre espaces métriques mesurés, (2001)
- V. Gol'dshtein, L. Gurov, A. Romanov, Homeomorphisms that induce Monomorphisms of Sobolev Spaces, Israel J. of Math 91 (1995), 31-60 Zbl0836.46021MR1348304
- V. Gol'dshtein, M. Troyanov, The Kelvin-Nevanlinna-Royden criterion for p-parabolicity, Math. Zeitschrift 232 (1999), 607-619 Zbl0939.31011MR1727544
- A. Grigor'yan, Analytic and Geometric Background of Recurence and Non-Explosion of the Brownian Motion on Riemannian Manifolds, Bull. Amer. Math. Soc 36 (1999), 135-242 Zbl0927.58019MR1659871
- P. Hajlasz, Change of Variables Formula under Minimal Assumptions, Colloquium Mathematicum 64 (1993), 93-101 Zbl0840.26009MR1201446
- J. Heinonen, T. Kilpeläinen, O. Martio, Non Linear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs (1993) Zbl0780.31001MR1207810
- J. Heinonen, P. Koskela, Sobolev Mappings with Integrable Dilatation, Arch. Rational Mech.Anal 125 (1993), 81-97 Zbl0792.30016MR1241287
- I. Holopainen, Non linear Potential Theory and Quasiregular Mappings on Riemannian Manifolds, Annales Academiae Scientiarum Fennicae Series A 74 (1990) Zbl0698.31010MR1052971
- I. Holopainen, Rough isometries and p-harmonic functions with finite Dirichlet integral, Revista Mathemática Iberoamericana 10 (1994), 143-175 Zbl0797.31008MR1271760
- T. Iwaniec, P. Koskela, J. Onninen, Mappings of finite distortion: Monotonicity and continuity Zbl1006.30016MR1833892
- M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds, J. Math. Soc. Japan 38 (1986), 227-238 Zbl0577.53031MR833199
- J. Kauhanen, P. Koskela, J. Malỳ, Mappings of finite distortion: discreteness and openess, (2000) Zbl0998.30024MR1864838
- J. Maly, Absolutely continuous functions of several variables, J. Math. Anal. Appl 231 (1999), 492-508 Zbl0924.26008MR1669167
- J. Maly, O. Martio, Lusin’s condition N and mappings of the class , J. Reine Angew. Math 458 (1995), 19-36 Zbl0812.30007MR1310951
- J. J. Manfredi, E. Villamor, An extension of Reshetnyak's theorem, Indiana Univ. Math. J 47 (1998), 1131-1145 Zbl0931.30014MR1665761
- O. Martio, S. Rickman, J. Väisälä, Definitions for Quasiregular Mappings, Ann. Acad. Sc. Fenn 448 (1969), 5-40 Zbl0189.09204MR259114
- O. Martio, W. P. Ziemer, Lusin's condition (N) and mappings of non negative Jacobian, Michigan. Math. J 39 (1992), 495-508 Zbl0807.46032MR1182504
- V.G. Maz'ya, Sobolev Spaces, (1985), Springer Verlag Zbl0692.46023MR817985
- V. Maz'ya, T. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, (1985), Pitman MR881055
- S. Müller, T. Qi, B.S. Yan, On a new class of elastic deformations not allowing for cavitation, Ann. Inst. Henri Poincaré 11 (1994), 217-243 Zbl0863.49002MR1267368
- S. Müller, S. Spector, An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rational Mech. Anal. 131 (1995), 1-66 Zbl0836.73025MR1346364
- P. Pansu, Difféomorphismes de p-dilatation bornées, Ann. Acad. Sc. Fenn 223 (1997), 475-506 Zbl0890.22005MR1469804
- P. Pansu, Cohomologie , espaces homogènes et pincement, (1999)
- M. Reiman, Über harmonishe Kapazität und quasikonforme Abbildungen in Raum., Comm. Math. Helv 44 (1969), 284-307 Zbl0176.03504MR252637
- Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Translation of Math. Monographs 73 (1989) Zbl0667.30018MR994644
- Yu. G. Reshetnyak, Mappings with bounded distortion as extremals of integrals of Dirichlet type, Siberian Math. Journal 9 (1968), 652-666 Zbl0162.38202MR230900
- Yu. G. Reshetnyak, Sobolev classes of functions with values in a metric space, Siberian Math. Journal 38 (1997), 657-675 Zbl0944.46024MR1457485
- S. Rickman, Quasi-regular Mappings, 26 (1993), Springer Zbl0816.30017
- S. Rickman, Topics in the Theory of Quasi-regular Mappings, E 12 (1988) Zbl0658.30015
- C. J. Titus, G. S. Young, The extension of interiority, with some applications, Trans. Amer. Math. Soc 103 (1962), 329-340 Zbl0113.38001MR137103
- M. Troyanov, Parabolicity of Manifolds, Siberian Adv. Math 9 (1999), 1-25 Zbl0991.31008MR1749853
- S. K. Vodop'yanov, Taylor Formula and Function Spaces (in Russian), Novosibirsk University (1988) Zbl0709.46009MR996639
- S. K. Vodop'yanov, Geometric Properties of Function Spaces (in Russian), (1992)
- S. K. Vodop'yanov, Monotone Functions and Quaiconformal Mappings on Carnot Groups, Siberian Math. J 37 (1996), 1269-1295 Zbl0876.30020MR1440383
- S. K. Vodop'yanov, Topological and Geometric Properties of Mappings of Sobolev Spaces with Integrable Jacobian I, Siberian Math. J 41 (2000), 23-48 Zbl0983.30009MR1756474
- S. K. Vodop'yanov, Mappings with Bounded Distortion and with Finite Distortion on Carnot Groups, Siberian Math. J 40 (1999), 764-804 Zbl0973.30021MR1721674
- S. Vodop'yanov, V. Gol'dshtein, Quasi-conformal mapping and spaces of functions with generalized first derivatives, Siberian Math. J 17 (1977), 515-531 Zbl0353.30019
- S. Vodop'yanov, A. Ukhlov, Sobolev Spaces and (P,Q)-Quasiconformal Mappings of Carnot Groups, Siberian Math. J 39 (1998), 665-682 Zbl0917.46023MR1654140
- V. A. Zorich, V. M. Kesel'man, On the Conformal Type of a Riemannian Manifold, Func. Anal. and Appl 30 (1996), 106-117 Zbl0873.53025MR1402080
- V. A. Zorich, A theorem of M.A. Lavrent'ev on quasiconformal space maps, Mat.Sb. 74 (1967), 417-433 Zbl0181.08701
- V. A. Zorich, A theorem of M.A. Lavrent'ev on quasiconformal space maps, Math. USSR Sb. (English transl.) 3 (1967) Zbl0184.10801
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.