A class of globally univalent differentiable mappings
In this paper we propose a procedure to construct approximations of the inverse of a class of differentiable mappings. First of all we determine in terms of the data a neighbourhood where the inverse mapping is well defined. Then it is proved that the theoretical inverse can be expressed in terms of the solution of a differential equation depending on parameters. Finally, using one-step matrix methods we construct approximate inverse mappings of a prescribed accuracy.
In the previous papers concerning the change of variables formula (in the form involving the Banach indicatrix) various assumptions were made about the corresponding transformation (see e.g. [BI], [GR], [F], [RR]). The full treatment of the case of continuous transformation is given in [RR]. In [BI] the transformation was assumed to be continuous, a.e. differentiable and with locally integrable Jacobian. In this paper we show that none of these assumptions is necessary (Theorem 2). We only need...
Let F be a polynomial mapping of ℝ², F(O) = 0. In 1987 Meisters and Olech proved that the solution y(·) = 0 of the autonomous system of differential equations ẏ = F(y) is globally asymptotically stable provided that the jacobian of F is everywhere positive and the trace of the matrix of the differential of F is everywhere negative. In particular, the mapping F is then injective. We give an n-dimensional generalization of this result.