On a two-variable zeta function for number fields

Jeffrey C. Lagarias[1]; Eric Rains[2]

  • [1] AT & T Labs - Research, Florham Park NJ 07932 (USA)
  • [2] Center for Communications Research, 805 Bunn Drive, Princeton NJ 09540 (USA)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 1, page 1-68
  • ISSN: 0373-0956

Abstract

top
This paper studies a two-variable zeta function Z K ( w , s ) attached to an algebraic number field K , introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When w = 1 this function becomes the completed Dedekind zeta function ζ ^ K ( s ) of the field K . The function is a meromorphic function of two complex variables with polar divisor s ( w - s ) , and it satisfies the functional equation Z K ( w , s ) = Z K ( w , w - s ) . We consider the special case K = , where for w = 1 this function is ζ ^ ( s ) = π - s 2 Γ ( s 2 ) ζ ( s ) . The function ξ ( w , s ) : = s ( s - w ) 2 w Z ( w , s ) is shown to be an entire function on 2 , to satisfy the functional equation ξ ( w , s ) = ξ ( w , w - s ) , and to have ξ ( 0 , s ) = - s 2 8 ( 1 - 2 1 + s 2 ) ( 1 - 2 1 - s 2 ) ζ ^ ( s 2 ) ζ ^ ( - s 2 ) . We study the location of the zeros of Z ( w , s ) for various real values of w = u . For fixed u 0 the zeros are confined to a vertical strip of width at most u + 16 and the number of zeros N u ( T ) to height T has similar asymptotics to the Riemann zeta function. For fixed u < 0 these functions are strictly positive on the “critical line” ( s ) = u 2 . This phenomenon is associated to a positive convolution semigroup with parameter u > 0 , which is a semigroup of infinitely divisible probability distributions, having densities P u ( x ) d x for real x , where P u ( x ) = 1 2 π θ ( 1 ) u Z ( - u , - u 2 + i x ) , and θ ( 1 ) = π 1 / 4 / Γ ( 3 / 4 ) .

How to cite

top

Lagarias, Jeffrey C., and Rains, Eric. "On a two-variable zeta function for number fields." Annales de l’institut Fourier 53.1 (2003): 1-68. <http://eudml.org/doc/116034>.

@article{Lagarias2003,
abstract = {This paper studies a two-variable zeta function $Z_K (w, s)$ attached to an algebraic number field $K$, introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When $w= 1$ this function becomes the completed Dedekind zeta function $\hat\{\zeta \}_K(s)$ of the field $K$. The function is a meromorphic function of two complex variables with polar divisor $s(w - s)$, and it satisfies the functional equation $Z_K(w, s) = Z_K(w,w - s)$. We consider the special case $K = \{\mathbb \{Q\}\}$, where for $w = 1$ this function is $\hat\{\zeta \}(s)= \pi ^\{- \{s\over 2\}\} \Gamma (\{s\over 2\}) \zeta (s)$. The function $\xi _\{\{\mathbb \{Q\}\}\}(w, s) := \{s(s- w)\over 2 w\}Z_\{\{\mathbb \{Q\}\}\}(w, s)$ is shown to be an entire function on $\{\mathbb \{C\}\}^2$, to satisfy the functional equation $\xi _\{\{\mathbb \{Q\}\}\}(w, s) = \xi _\{\{\mathbb \{Q\}\}\}(w, w - s),$ and to have $\xi _\{\{\mathbb \{Q\}\}\}(0, s) =-\{s^2\over 8\}(1 - 2^\{1 + \{s\over 2\}\}) (1 - 2^\{1 - \{s\over 2\}\}) \hat\{\zeta \}(\{s\over 2\}) \hat\{\zeta \}(\{-s\over 2\}).$ We study the location of the zeros of $Z_\{\{\mathbb \{Q\}\}\}(w, s)$ for various real values of $w = u$. For fixed $u \ge 0$ the zeros are confined to a vertical strip of width at most $u + 16 $ and the number of zeros $N_u(T)$ to height $T$ has similar asymptotics to the Riemann zeta function. For fixed $u &lt; 0$ these functions are strictly positive on the “critical line” $\{\mathfrak \{R\}\}(s) = \{u\over 2\}$. This phenomenon is associated to a positive convolution semigroup with parameter $u \in \{\mathbb \{R\}\}_\{&gt; 0\}$, which is a semigroup of infinitely divisible probability distributions, having densities $P_u(x)dx$ for real $x$, where $P_u(x) = \{1\over 2\pi \}\theta (1)^u Z_\{\{\mathbb \{Q\}\}\}(-u, -\{u\over 2\} + ix),$ and $\theta (1) = \pi ^\{1/4\}/\Gamma (3/4)$.},
affiliation = {AT & T Labs - Research, Florham Park NJ 07932 (USA); Center for Communications Research, 805 Bunn Drive, Princeton NJ 09540 (USA)},
author = {Lagarias, Jeffrey C., Rains, Eric},
journal = {Annales de l’institut Fourier},
keywords = {Arakelov divisors; functional equation; infinitely divisible distributions; zeta functions},
language = {eng},
number = {1},
pages = {1-68},
publisher = {Association des Annales de l'Institut Fourier},
title = {On a two-variable zeta function for number fields},
url = {http://eudml.org/doc/116034},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Lagarias, Jeffrey C.
AU - Rains, Eric
TI - On a two-variable zeta function for number fields
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 1
EP - 68
AB - This paper studies a two-variable zeta function $Z_K (w, s)$ attached to an algebraic number field $K$, introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When $w= 1$ this function becomes the completed Dedekind zeta function $\hat{\zeta }_K(s)$ of the field $K$. The function is a meromorphic function of two complex variables with polar divisor $s(w - s)$, and it satisfies the functional equation $Z_K(w, s) = Z_K(w,w - s)$. We consider the special case $K = {\mathbb {Q}}$, where for $w = 1$ this function is $\hat{\zeta }(s)= \pi ^{- {s\over 2}} \Gamma ({s\over 2}) \zeta (s)$. The function $\xi _{{\mathbb {Q}}}(w, s) := {s(s- w)\over 2 w}Z_{{\mathbb {Q}}}(w, s)$ is shown to be an entire function on ${\mathbb {C}}^2$, to satisfy the functional equation $\xi _{{\mathbb {Q}}}(w, s) = \xi _{{\mathbb {Q}}}(w, w - s),$ and to have $\xi _{{\mathbb {Q}}}(0, s) =-{s^2\over 8}(1 - 2^{1 + {s\over 2}}) (1 - 2^{1 - {s\over 2}}) \hat{\zeta }({s\over 2}) \hat{\zeta }({-s\over 2}).$ We study the location of the zeros of $Z_{{\mathbb {Q}}}(w, s)$ for various real values of $w = u$. For fixed $u \ge 0$ the zeros are confined to a vertical strip of width at most $u + 16 $ and the number of zeros $N_u(T)$ to height $T$ has similar asymptotics to the Riemann zeta function. For fixed $u &lt; 0$ these functions are strictly positive on the “critical line” ${\mathfrak {R}}(s) = {u\over 2}$. This phenomenon is associated to a positive convolution semigroup with parameter $u \in {\mathbb {R}}_{&gt; 0}$, which is a semigroup of infinitely divisible probability distributions, having densities $P_u(x)dx$ for real $x$, where $P_u(x) = {1\over 2\pi }\theta (1)^u Z_{{\mathbb {Q}}}(-u, -{u\over 2} + ix),$ and $\theta (1) = \pi ^{1/4}/\Gamma (3/4)$.
LA - eng
KW - Arakelov divisors; functional equation; infinitely divisible distributions; zeta functions
UR - http://eudml.org/doc/116034
ER -

References

top
  1. G. E. Andrews, The Theory of Partitions, (1976), Addison-Wesley (Reprint: Cambridge University Press, 1998), Reading, Mass. Zbl0655.10001MR1634067
  2. G. E. Andrews, R. Askey, R. Roy, Special Functions, (1999), Cambridge Univ. Press, Cambridge Zbl0920.33001MR1688958
  3. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, (1976), Springer, New York Zbl0697.10023MR422157
  4. P. Biane, J. Pitman, M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc 38 (2001), 435-465 Zbl1040.11061MR1848256
  5. E. Bombieri, D. A. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J 80 (1995), 821-862 Zbl0853.11074MR1370117
  6. A. Borisov, Convolution structures and arithmetic cohomology, (3 Jan 2001) Zbl1158.11340
  7. R. W. Bruggeman, Families of Automorphic Forms, (1994), Birkhäuser Verlag, Basel Zbl0821.11029MR1306502
  8. J. B. Conrey, A. Ghosh, Turán inequalitites and zeros of Dirichlet series associated with certain cusp forms, Trans. Amer. Math. Soc 342 (1994), 407-419 Zbl0796.11021MR1207582
  9. H. Davenport, Multiplicative Number Theory, (1980), Springer-Verlag, New York Zbl0453.10002MR606931
  10. W. Feller, An Introduction to Probability Theory and its Applications, Volume II, (1971), John Wiley & Sons, New York Zbl0219.60003MR270403
  11. G. van der Geer, R. Schoof, Effectivity of Arakelov Divisors and the theta divisor of a number field, 6 (2000), eprint: Zbl1030.11063MR1847381
  12. D. A. Hejhal, On a result of Selberg concerning zeros of linear combinations of L-functions, Internat. Mat. Research Notices (2000), 551-577 Zbl1159.11318MR1763856
  13. S. Lang, Introduction to Modular Forms, (1976), Springer-Verlag, New York Zbl0344.10011MR429740
  14. S. Lang, Algebraic Number Theory, (1994), Springer-Verlag, New York Zbl0811.11001MR1282723
  15. J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups II, Michigan Math. J 6 (1959), 173-193 Zbl0085.30003MR106280
  16. J. Lehner, Magnitude of the Fourier coefficients of automorphic forms of negative dimension, Bull. Amer. Math. Soc 67 (1961), 603-606 Zbl0106.28702MR138930
  17. J. Lehner, Discontinuous Groups and Arithmetic Subgroups, Number VIII (1964), Amer. Math. Soc., Providence, RI Zbl0178.42902
  18. R. Pellikaan, On special divisors and the two variable zeta function of algebraic curves over finite fields, Arithmetic, Geometry and Coding Theory (1996), 175-184, Walter de Gruyter, Berlin Zbl1019.11016
  19. H. Petersson, Über automorphe Orthogonalfunktionen und die Konstruktion der automorphen Formen von positiver reeller Dimension, Math. Ann 127 (1954), 33-81 Zbl0058.06801MR60542
  20. H. Petersson, Über Betragmittelwerte und die Fourier-Koeffizienten der ganzen automorphen Formen, Arch. Math. (Basel) 9 (1958), 176-182 Zbl0082.29504MR100675
  21. J. Pitman, M. Yor, Infinitely divisible laws associated to hyperbolic functions, Univ. Calif.-Berkeley Stat. Technical Rept. (2001) Zbl1039.11054
  22. H. Rademacher, On the expansion of the partition function in a series, Ann. Math 44 (1943), 416-422 Zbl0060.10005MR8618
  23. L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, (1974), Amer. Math. Soc., Providence, RI Zbl0286.32004MR346175
  24. L. I. Ronkin, Entire Functions, Several Complex Variables III Volume 9 (1989), 1-30, Springer-Verlag, New York 
  25. W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, CBMS Publication No. 21 (1974), Amer. Math. Soc., Providence, RI Zbl0292.32003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.