On a two-variable zeta function for number fields
Jeffrey C. Lagarias[1]; Eric Rains[2]
- [1] AT & T Labs - Research, Florham Park NJ 07932 (USA)
- [2] Center for Communications Research, 805 Bunn Drive, Princeton NJ 09540 (USA)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 1, page 1-68
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLagarias, Jeffrey C., and Rains, Eric. "On a two-variable zeta function for number fields." Annales de l’institut Fourier 53.1 (2003): 1-68. <http://eudml.org/doc/116034>.
@article{Lagarias2003,
abstract = {This paper studies a two-variable zeta function $Z_K (w, s)$ attached to an algebraic
number field $K$, introduced by van der Geer and Schoof, which is based on an analogue of
the Riemann-Roch theorem for number fields using Arakelov divisors. When $w= 1$ this
function becomes the completed Dedekind zeta function $\hat\{\zeta \}_K(s)$ of the field $K$.
The function is a meromorphic function of two complex variables with polar divisor $s(w -
s)$, and it satisfies the functional equation $Z_K(w, s) = Z_K(w,w - s)$. We consider the
special case $K = \{\mathbb \{Q\}\}$, where for $w = 1$ this function is $\hat\{\zeta \}(s)= \pi ^\{-
\{s\over 2\}\} \Gamma (\{s\over 2\}) \zeta (s)$. The function $\xi _\{\{\mathbb \{Q\}\}\}(w, s) := \{s(s-
w)\over 2 w\}Z_\{\{\mathbb \{Q\}\}\}(w, s)$ is shown to be an entire function on $\{\mathbb \{C\}\}^2$, to
satisfy the functional equation $\xi _\{\{\mathbb \{Q\}\}\}(w, s) = \xi _\{\{\mathbb \{Q\}\}\}(w, w - s),$ and to
have $\xi _\{\{\mathbb \{Q\}\}\}(0, s) =-\{s^2\over 8\}(1 - 2^\{1 + \{s\over 2\}\}) (1 - 2^\{1 - \{s\over 2\}\}) \hat\{\zeta \}(\{s\over 2\}) \hat\{\zeta \}(\{-s\over 2\}).$ We study the location of the
zeros of $Z_\{\{\mathbb \{Q\}\}\}(w, s)$ for various real values of $w = u$. For fixed $u \ge 0$ the zeros are confined to a vertical strip of width at most $u + 16 $ and the number of
zeros $N_u(T)$ to height $T$ has similar asymptotics to the Riemann zeta function. For
fixed $u < 0$ these functions are strictly positive on the “critical line” $\{\mathfrak \{R\}\}(s) = \{u\over 2\}$. This phenomenon is associated to a positive convolution semigroup
with parameter $u \in \{\mathbb \{R\}\}_\{> 0\}$, which is a semigroup of infinitely divisible
probability distributions, having densities $P_u(x)dx$ for real $x$, where $P_u(x) =
\{1\over 2\pi \}\theta (1)^u Z_\{\{\mathbb \{Q\}\}\}(-u, -\{u\over 2\} + ix),$ and $\theta (1) =
\pi ^\{1/4\}/\Gamma (3/4)$.},
affiliation = {AT & T Labs - Research, Florham Park NJ 07932 (USA); Center for Communications Research, 805 Bunn Drive, Princeton NJ 09540 (USA)},
author = {Lagarias, Jeffrey C., Rains, Eric},
journal = {Annales de l’institut Fourier},
keywords = {Arakelov divisors; functional equation; infinitely divisible distributions; zeta functions},
language = {eng},
number = {1},
pages = {1-68},
publisher = {Association des Annales de l'Institut Fourier},
title = {On a two-variable zeta function for number fields},
url = {http://eudml.org/doc/116034},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Lagarias, Jeffrey C.
AU - Rains, Eric
TI - On a two-variable zeta function for number fields
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 1
EP - 68
AB - This paper studies a two-variable zeta function $Z_K (w, s)$ attached to an algebraic
number field $K$, introduced by van der Geer and Schoof, which is based on an analogue of
the Riemann-Roch theorem for number fields using Arakelov divisors. When $w= 1$ this
function becomes the completed Dedekind zeta function $\hat{\zeta }_K(s)$ of the field $K$.
The function is a meromorphic function of two complex variables with polar divisor $s(w -
s)$, and it satisfies the functional equation $Z_K(w, s) = Z_K(w,w - s)$. We consider the
special case $K = {\mathbb {Q}}$, where for $w = 1$ this function is $\hat{\zeta }(s)= \pi ^{-
{s\over 2}} \Gamma ({s\over 2}) \zeta (s)$. The function $\xi _{{\mathbb {Q}}}(w, s) := {s(s-
w)\over 2 w}Z_{{\mathbb {Q}}}(w, s)$ is shown to be an entire function on ${\mathbb {C}}^2$, to
satisfy the functional equation $\xi _{{\mathbb {Q}}}(w, s) = \xi _{{\mathbb {Q}}}(w, w - s),$ and to
have $\xi _{{\mathbb {Q}}}(0, s) =-{s^2\over 8}(1 - 2^{1 + {s\over 2}}) (1 - 2^{1 - {s\over 2}}) \hat{\zeta }({s\over 2}) \hat{\zeta }({-s\over 2}).$ We study the location of the
zeros of $Z_{{\mathbb {Q}}}(w, s)$ for various real values of $w = u$. For fixed $u \ge 0$ the zeros are confined to a vertical strip of width at most $u + 16 $ and the number of
zeros $N_u(T)$ to height $T$ has similar asymptotics to the Riemann zeta function. For
fixed $u < 0$ these functions are strictly positive on the “critical line” ${\mathfrak {R}}(s) = {u\over 2}$. This phenomenon is associated to a positive convolution semigroup
with parameter $u \in {\mathbb {R}}_{> 0}$, which is a semigroup of infinitely divisible
probability distributions, having densities $P_u(x)dx$ for real $x$, where $P_u(x) =
{1\over 2\pi }\theta (1)^u Z_{{\mathbb {Q}}}(-u, -{u\over 2} + ix),$ and $\theta (1) =
\pi ^{1/4}/\Gamma (3/4)$.
LA - eng
KW - Arakelov divisors; functional equation; infinitely divisible distributions; zeta functions
UR - http://eudml.org/doc/116034
ER -
References
top- G. E. Andrews, The Theory of Partitions, (1976), Addison-Wesley (Reprint: Cambridge University Press, 1998), Reading, Mass. Zbl0655.10001MR1634067
- G. E. Andrews, R. Askey, R. Roy, Special Functions, (1999), Cambridge Univ. Press, Cambridge Zbl0920.33001MR1688958
- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, (1976), Springer, New York Zbl0697.10023MR422157
- P. Biane, J. Pitman, M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc 38 (2001), 435-465 Zbl1040.11061MR1848256
- E. Bombieri, D. A. Hejhal, On the distribution of zeros of linear combinations of Euler products, Duke Math. J 80 (1995), 821-862 Zbl0853.11074MR1370117
- A. Borisov, Convolution structures and arithmetic cohomology, (3 Jan 2001) Zbl1158.11340
- R. W. Bruggeman, Families of Automorphic Forms, (1994), Birkhäuser Verlag, Basel Zbl0821.11029MR1306502
- J. B. Conrey, A. Ghosh, Turán inequalitites and zeros of Dirichlet series associated with certain cusp forms, Trans. Amer. Math. Soc 342 (1994), 407-419 Zbl0796.11021MR1207582
- H. Davenport, Multiplicative Number Theory, (1980), Springer-Verlag, New York Zbl0453.10002MR606931
- W. Feller, An Introduction to Probability Theory and its Applications, Volume II, (1971), John Wiley & Sons, New York Zbl0219.60003MR270403
- G. van der Geer, R. Schoof, Effectivity of Arakelov Divisors and the theta divisor of a number field, 6 (2000), eprint: Zbl1030.11063MR1847381
- D. A. Hejhal, On a result of Selberg concerning zeros of linear combinations of L-functions, Internat. Mat. Research Notices (2000), 551-577 Zbl1159.11318MR1763856
- S. Lang, Introduction to Modular Forms, (1976), Springer-Verlag, New York Zbl0344.10011MR429740
- S. Lang, Algebraic Number Theory, (1994), Springer-Verlag, New York Zbl0811.11001MR1282723
- J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups II, Michigan Math. J 6 (1959), 173-193 Zbl0085.30003MR106280
- J. Lehner, Magnitude of the Fourier coefficients of automorphic forms of negative dimension, Bull. Amer. Math. Soc 67 (1961), 603-606 Zbl0106.28702MR138930
- J. Lehner, Discontinuous Groups and Arithmetic Subgroups, Number VIII (1964), Amer. Math. Soc., Providence, RI Zbl0178.42902
- R. Pellikaan, On special divisors and the two variable zeta function of algebraic curves over finite fields, Arithmetic, Geometry and Coding Theory (1996), 175-184, Walter de Gruyter, Berlin Zbl1019.11016
- H. Petersson, Über automorphe Orthogonalfunktionen und die Konstruktion der automorphen Formen von positiver reeller Dimension, Math. Ann 127 (1954), 33-81 Zbl0058.06801MR60542
- H. Petersson, Über Betragmittelwerte und die Fourier-Koeffizienten der ganzen automorphen Formen, Arch. Math. (Basel) 9 (1958), 176-182 Zbl0082.29504MR100675
- J. Pitman, M. Yor, Infinitely divisible laws associated to hyperbolic functions, Univ. Calif.-Berkeley Stat. Technical Rept. (2001) Zbl1039.11054
- H. Rademacher, On the expansion of the partition function in a series, Ann. Math 44 (1943), 416-422 Zbl0060.10005MR8618
- L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, (1974), Amer. Math. Soc., Providence, RI Zbl0286.32004MR346175
- L. I. Ronkin, Entire Functions, Several Complex Variables III Volume 9 (1989), 1-30, Springer-Verlag, New York
- W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, CBMS Publication No. 21 (1974), Amer. Math. Soc., Providence, RI Zbl0292.32003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.