Gauge equivalence of Dirac structures and symplectic groupoids
Henrique Bursztyn[1]; Olga Radko[2]
- [1] University of Toronto, Department of Mathematics, Toronto, Ontario M5S 3G3 (Canada)
- [2] University of California, Department of Mathematics, Berkeley CA 94720 (USA)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 1, page 309-337
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBursztyn, Henrique, and Radko, Olga. "Gauge equivalence of Dirac structures and symplectic groupoids." Annales de l’institut Fourier 53.1 (2003): 309-337. <http://eudml.org/doc/116037>.
@article{Bursztyn2003,
abstract = {We study gauge transformations of Dirac structures and the relationship between gauge and
Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a
symplectic groupoid is affected by a gauge transformation of the Poisson structure on its
identity section, and prove that gauge-equivalent integrable Poisson structures are
Morita equivalent. As an example, we study certain generic sets of Poisson structures on
Riemann surfaces: we find complete gauge-equivalence invariants for such structures
which, on the $2$-sphere, yield a complete invariant of Morita equivalence.},
affiliation = {University of Toronto, Department of Mathematics, Toronto, Ontario M5S 3G3 (Canada); University of California, Department of Mathematics, Berkeley CA 94720 (USA)},
author = {Bursztyn, Henrique, Radko, Olga},
journal = {Annales de l’institut Fourier},
keywords = {Dirac structures; gauge equivalence; Morita equivalence; symplectic groupoids},
language = {eng},
number = {1},
pages = {309-337},
publisher = {Association des Annales de l'Institut Fourier},
title = {Gauge equivalence of Dirac structures and symplectic groupoids},
url = {http://eudml.org/doc/116037},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Bursztyn, Henrique
AU - Radko, Olga
TI - Gauge equivalence of Dirac structures and symplectic groupoids
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 309
EP - 337
AB - We study gauge transformations of Dirac structures and the relationship between gauge and
Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a
symplectic groupoid is affected by a gauge transformation of the Poisson structure on its
identity section, and prove that gauge-equivalent integrable Poisson structures are
Morita equivalent. As an example, we study certain generic sets of Poisson structures on
Riemann surfaces: we find complete gauge-equivalence invariants for such structures
which, on the $2$-sphere, yield a complete invariant of Morita equivalence.
LA - eng
KW - Dirac structures; gauge equivalence; Morita equivalence; symplectic groupoids
UR - http://eudml.org/doc/116037
ER -
References
top- F. Bayen, M. Flato, C. FrØnsdal, A. Lichnerowicz, D. Sternheimer, Deformation Theory and Quantization, Ann. Phys 111 (1978), 61-151 Zbl0377.53024MR496157
- A. Blaom, A geometric setting for Hamiltonian perturbation theory, Mem. Amer. Math. Soc 153 (2001) Zbl1003.70002MR1848237
- J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom 28 (1988), 93-114 Zbl0634.58029MR950556
- H. Bursztyn, Semiclassical geometry of quantum line bundles and Morita equivalence of star products, Int. Math. Res. Notices 16 (2002), 821-846 Zbl1031.53120MR1891209
- H. Bursztyn, S. Waldmann, The characteristic classes of Morita equivalent star products on symplectic manifolds, Comm. Math. Physics 228 (2002), 103-121 Zbl1036.53068MR1911250
- A. Cannas da Silva, A. Weinstein, Geometric models for noncommutative algebras, (1999), American Mathematical Society, Providence, RI Zbl1135.58300MR1747916
- A. Cattaneo, G. Felder, Poisson sigma-models and symplectic groupoids Zbl1038.53074
- L. S. Charlap, Compact flat riemannian manifolds. I, Ann. of Math (2) 81 (1965), 15-30 Zbl0132.16506MR170305
- A. Coste, P. Dazord, A. Weinstein, Groupoïdes symplectiques, Vol. 2 (1987), 1-62, Publications du Département de Mathématiques, Univ. Claude-BernardLyon Zbl0668.58017
- T. Courant, Dirac manifolds, Trans. Amer. Math. Soc 319 (1990), 631-661 Zbl0850.70212MR998124
- T. Courant, A. Weinstein, Beyond Poisson structures, Action hamiltoniennes de groupes, Troisième théorème de Lie (Lyon, 1986) (1988), 39-49, Hermann, Paris Zbl0698.58020
- M. Crainic, Differentiable and algebroid cohomology, van Est isomorphisms and characteristic classes Zbl1041.58007MR2016690
- M. Crainic, R. Fernandes, Integrability of Lie brackets Zbl1037.22003MR1973056
- P. Dazord, T. Delzant, Le problème général des variables actions-angles, J. Differential Geom 26 (1987), 223-251 Zbl0634.58003MR906389
- C. Debord, Groupoïdes d'holonomie de feuilletages singuliers, C. R. Acad. Sci. Paris, Sér. I Math 330 (2000), 361-364 Zbl0948.57022MR1751671
- V. L. Ginzburg, Grothendieck Groups of Poisson Vector Bundles Zbl1032.53072MR1959580
- V. L. Ginzburg, J. H. Lu, Poisson cohomology of Morita-equivalent Poisson manifolds, Internat. Math. Res. Notices 10 (1992), 199-205 Zbl0783.58026MR1191570
- M. Gotay, R. Lashof, J. {#x015A;}niatycki, A. Weinstein, Closed forms on symplectic fibre bundles, Comment. Math. Helv 58 (1983), 617-621 Zbl0536.53040MR728456
- P. Hilton, G. Mislin, J. Roitberg, Sphere bundles over spheres and non-cancellation phenomena, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971) Vol. 249 (1971), 34-46, Springer, Berlin Zbl0227.55016
- B. Jurco, P. Schupp, J. Wess, Noncommutative line bundle and Morita equivalence Zbl1036.53070
- C. Klimcik, T. Strobl, Symplectic geometry and Mirror symmetry (Seoul, 2000), (2001), 311-384, World Sci. Publishing, NJ
- M. Kontsevich, Deformation Quantization of Poisson Manifolds, I Zbl1058.53065
- N. Landsman, Quantization as a functor Zbl1034.46065MR1958827
- J. S. Park, Topological open p-branes, J. Geom. Phys 43 (2002), 341-344 Zbl1024.81043MR1882334
- O. Radko, A classification of topologically stable Poisson structures on a compact oriented surface Zbl1093.53087MR1959058
- D. Roytenberg, Poisson cohomology of -covariant “necklace” Poisson structures on , J. Nonlinear Math. Physics 9 (2002), 347-356 Zbl1032.53073MR1916390
- S. Severa, A. Weinstein, Poisson geometry with a 3-form background, (2001) Zbl1029.53090
- A. Weinstein, The symplectic "category", Differential geometric methods in mathematical physics (Clausthal, 1980) (1982), 45-51, Springer, Berlin Zbl0486.58017
- A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom 18 (1983), 523-557 Zbl0524.58011MR723816
- A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), 101-104 Zbl0618.58020MR866024
- A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705-727 Zbl0642.58025MR959095
- A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys 23 (1997), 379-394 Zbl0902.58013MR1484598
- P. Xu, Morita equivalence of Poisson manifolds, Comm. Math. Phys 142 (1991), 493-509 Zbl0746.58034MR1138048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.