Gauge equivalence of Dirac structures and symplectic groupoids

Henrique Bursztyn[1]; Olga Radko[2]

  • [1] University of Toronto, Department of Mathematics, Toronto, Ontario M5S 3G3 (Canada)
  • [2] University of California, Department of Mathematics, Berkeley CA 94720 (USA)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 1, page 309-337
  • ISSN: 0373-0956

Abstract

top
We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study certain generic sets of Poisson structures on Riemann surfaces: we find complete gauge-equivalence invariants for such structures which, on the 2 -sphere, yield a complete invariant of Morita equivalence.

How to cite

top

Bursztyn, Henrique, and Radko, Olga. "Gauge equivalence of Dirac structures and symplectic groupoids." Annales de l’institut Fourier 53.1 (2003): 309-337. <http://eudml.org/doc/116037>.

@article{Bursztyn2003,
abstract = {We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study certain generic sets of Poisson structures on Riemann surfaces: we find complete gauge-equivalence invariants for such structures which, on the $2$-sphere, yield a complete invariant of Morita equivalence.},
affiliation = {University of Toronto, Department of Mathematics, Toronto, Ontario M5S 3G3 (Canada); University of California, Department of Mathematics, Berkeley CA 94720 (USA)},
author = {Bursztyn, Henrique, Radko, Olga},
journal = {Annales de l’institut Fourier},
keywords = {Dirac structures; gauge equivalence; Morita equivalence; symplectic groupoids},
language = {eng},
number = {1},
pages = {309-337},
publisher = {Association des Annales de l'Institut Fourier},
title = {Gauge equivalence of Dirac structures and symplectic groupoids},
url = {http://eudml.org/doc/116037},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Bursztyn, Henrique
AU - Radko, Olga
TI - Gauge equivalence of Dirac structures and symplectic groupoids
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 309
EP - 337
AB - We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study certain generic sets of Poisson structures on Riemann surfaces: we find complete gauge-equivalence invariants for such structures which, on the $2$-sphere, yield a complete invariant of Morita equivalence.
LA - eng
KW - Dirac structures; gauge equivalence; Morita equivalence; symplectic groupoids
UR - http://eudml.org/doc/116037
ER -

References

top
  1. F. Bayen, M. Flato, C. FrØnsdal, A. Lichnerowicz, D. Sternheimer, Deformation Theory and Quantization, Ann. Phys 111 (1978), 61-151 Zbl0377.53024MR496157
  2. A. Blaom, A geometric setting for Hamiltonian perturbation theory, Mem. Amer. Math. Soc 153 (2001) Zbl1003.70002MR1848237
  3. J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom 28 (1988), 93-114 Zbl0634.58029MR950556
  4. H. Bursztyn, Semiclassical geometry of quantum line bundles and Morita equivalence of star products, Int. Math. Res. Notices 16 (2002), 821-846 Zbl1031.53120MR1891209
  5. H. Bursztyn, S. Waldmann, The characteristic classes of Morita equivalent star products on symplectic manifolds, Comm. Math. Physics 228 (2002), 103-121 Zbl1036.53068MR1911250
  6. A. Cannas da Silva, A. Weinstein, Geometric models for noncommutative algebras, (1999), American Mathematical Society, Providence, RI Zbl1135.58300MR1747916
  7. A. Cattaneo, G. Felder, Poisson sigma-models and symplectic groupoids Zbl1038.53074
  8. L. S. Charlap, Compact flat riemannian manifolds. I, Ann. of Math (2) 81 (1965), 15-30 Zbl0132.16506MR170305
  9. A. Coste, P. Dazord, A. Weinstein, Groupoïdes symplectiques, Vol. 2 (1987), 1-62, Publications du Département de Mathématiques, Univ. Claude-BernardLyon Zbl0668.58017
  10. T. Courant, Dirac manifolds, Trans. Amer. Math. Soc 319 (1990), 631-661 Zbl0850.70212MR998124
  11. T. Courant, A. Weinstein, Beyond Poisson structures, Action hamiltoniennes de groupes, Troisième théorème de Lie (Lyon, 1986) (1988), 39-49, Hermann, Paris Zbl0698.58020
  12. M. Crainic, Differentiable and algebroid cohomology, van Est isomorphisms and characteristic classes Zbl1041.58007MR2016690
  13. M. Crainic, R. Fernandes, Integrability of Lie brackets Zbl1037.22003MR1973056
  14. P. Dazord, T. Delzant, Le problème général des variables actions-angles, J. Differential Geom 26 (1987), 223-251 Zbl0634.58003MR906389
  15. C. Debord, Groupoïdes d'holonomie de feuilletages singuliers, C. R. Acad. Sci. Paris, Sér. I Math 330 (2000), 361-364 Zbl0948.57022MR1751671
  16. V. L. Ginzburg, Grothendieck Groups of Poisson Vector Bundles Zbl1032.53072MR1959580
  17. V. L. Ginzburg, J. H. Lu, Poisson cohomology of Morita-equivalent Poisson manifolds, Internat. Math. Res. Notices 10 (1992), 199-205 Zbl0783.58026MR1191570
  18. M. Gotay, R. Lashof, J. {#x015A;}niatycki, A. Weinstein, Closed forms on symplectic fibre bundles, Comment. Math. Helv 58 (1983), 617-621 Zbl0536.53040MR728456
  19. P. Hilton, G. Mislin, J. Roitberg, Sphere bundles over spheres and non-cancellation phenomena, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle, Wash., 1971) Vol. 249 (1971), 34-46, Springer, Berlin Zbl0227.55016
  20. B. Jurco, P. Schupp, J. Wess, Noncommutative line bundle and Morita equivalence Zbl1036.53070
  21. C. Klimcik, T. Strobl, Symplectic geometry and Mirror symmetry (Seoul, 2000), (2001), 311-384, World Sci. Publishing, NJ 
  22. M. Kontsevich, Deformation Quantization of Poisson Manifolds, I Zbl1058.53065
  23. N. Landsman, Quantization as a functor Zbl1034.46065MR1958827
  24. J. S. Park, Topological open p-branes, J. Geom. Phys 43 (2002), 341-344 Zbl1024.81043MR1882334
  25. O. Radko, A classification of topologically stable Poisson structures on a compact oriented surface Zbl1093.53087MR1959058
  26. D. Roytenberg, Poisson cohomology of S U ( 2 ) -covariant “necklace” Poisson structures on S 2 , J. Nonlinear Math. Physics 9 (2002), 347-356 Zbl1032.53073MR1916390
  27. S. Severa, A. Weinstein, Poisson geometry with a 3-form background, (2001) Zbl1029.53090
  28. A. Weinstein, The symplectic "category", Differential geometric methods in mathematical physics (Clausthal, 1980) (1982), 45-51, Springer, Berlin Zbl0486.58017
  29. A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom 18 (1983), 523-557 Zbl0524.58011MR723816
  30. A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987), 101-104 Zbl0618.58020MR866024
  31. A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan 40 (1988), 705-727 Zbl0642.58025MR959095
  32. A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys 23 (1997), 379-394 Zbl0902.58013MR1484598
  33. P. Xu, Morita equivalence of Poisson manifolds, Comm. Math. Phys 142 (1991), 493-509 Zbl0746.58034MR1138048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.