The small Schottky-Jung locus in positive characteristics different from two

Fabrizio Andreatta[1]

  • [1] Università La Sapienza, Dipartimento di Matematica - Instituto G. Castelnuovo, Piazzale Aldo Moro 2, 00185 Roma (Italie)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 1, page 69-106
  • ISSN: 0373-0956

Abstract

top
We prove that the locus of Jacobians is an irreducible component of the small Schottky locus in any characteristic different from 2 . The proof follows an idea of B. van Geemen in characteristic 0 and relies on a detailed analysis at the boundary of the q - expansion of the Schottky-Jung relations. We obtain algebraically such relations using Mumford’s theory of 2 -adic theta functions. We show how the uniformization theory of semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings, allows the study of higher dimensional q -expansions simplifying the argument.

How to cite

top

Andreatta, Fabrizio. "The small Schottky-Jung locus in positive characteristics different from two." Annales de l’institut Fourier 53.1 (2003): 69-106. <http://eudml.org/doc/116038>.

@article{Andreatta2003,
abstract = {We prove that the locus of Jacobians is an irreducible component of the small Schottky locus in any characteristic different from $2$. The proof follows an idea of B. van Geemen in characteristic $0$ and relies on a detailed analysis at the boundary of the $q$- expansion of the Schottky-Jung relations. We obtain algebraically such relations using Mumford’s theory of $2$-adic theta functions. We show how the uniformization theory of semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings, allows the study of higher dimensional $q$-expansions simplifying the argument.},
affiliation = {Università La Sapienza, Dipartimento di Matematica - Instituto G. Castelnuovo, Piazzale Aldo Moro 2, 00185 Roma (Italie)},
author = {Andreatta, Fabrizio},
journal = {Annales de l’institut Fourier},
keywords = {Schottky-Jung relations; theta functions; Mumford's uniformization},
language = {eng},
number = {1},
pages = {69-106},
publisher = {Association des Annales de l'Institut Fourier},
title = {The small Schottky-Jung locus in positive characteristics different from two},
url = {http://eudml.org/doc/116038},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Andreatta, Fabrizio
TI - The small Schottky-Jung locus in positive characteristics different from two
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 69
EP - 106
AB - We prove that the locus of Jacobians is an irreducible component of the small Schottky locus in any characteristic different from $2$. The proof follows an idea of B. van Geemen in characteristic $0$ and relies on a detailed analysis at the boundary of the $q$- expansion of the Schottky-Jung relations. We obtain algebraically such relations using Mumford’s theory of $2$-adic theta functions. We show how the uniformization theory of semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings, allows the study of higher dimensional $q$-expansions simplifying the argument.
LA - eng
KW - Schottky-Jung relations; theta functions; Mumford's uniformization
UR - http://eudml.org/doc/116038
ER -

References

top
  1. F. Andreatta, On Mumford's uniformization and Néron models of Jacobians of semistable curves over complete bases, Moduli of Abelian Varieties 195 (2001), 11-127, Birkhauser Zbl1120.14036
  2. A. Beauville, Prym varieties and the Schottky problem, Invent. Math 41 (1977), 149-196 Zbl0333.14013MR572974
  3. S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Band 21 (1990), Springer-Verlag Zbl0705.14001MR1045822
  4. L. Breen, Fonctions thêta et théorème du cube, 980 (1983), Springer-Verlag Zbl0558.14029MR823233
  5. C.-L. Chai, Compactification of Siegel moduli schemes, London Math. Soc. Lecture Notes Series 107 (1985) Zbl0578.14009MR853543
  6. R. Donagi, Big Schottky, Invent. Math 89 (1987), 569-599 Zbl0658.14022MR903385
  7. R. Donagi, The Schottky problem, Theory of Moduli 1337 (1988), 84-137, Springer-Verlag Zbl0676.14008
  8. G. Faltings, and C.-L. Chai, Degeneration of abelian varieties, Band 22 (1990), Springer-Verlag Zbl0744.14031MR1083353
  9. B. Van Geemen, Siegel modular forms vanishing on the moduli space of curves, Invent. Math 78 (1984), 329-349 Zbl0568.14015MR767196
  10. L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985) Zbl0595.14032MR797982
  11. D. Mumford, On the equations defining abelian varieties 1, 2, 3, Invent. Math 1 ; 3 (1966 ; 1967), 287-358 ; 71--135 ; 215--244 Zbl0219.14024MR219542
  12. D. Mumford, The structure of the moduli spaces of curves and abelian varieties, Actes Congrès Intern. Math. Tome 1 (1970), 457-465 Zbl0222.14023
  13. D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Comp. Math 24 (1972), 239-272 Zbl0241.14020MR352106
  14. D. Mumford, Prym varieties 1, Contributions to analysis (1974), 325-350, Acad. Press, New York Zbl0299.14018
  15. G. Van Steen, The Schottky-Jung theorem for Mumford curves, Ann. Inst. Fourier (Grenoble) 39 (1989), 1-15 Zbl0658.14015MR1011975
  16. G.E. Welters, The surface C - C in Jacobi varieties and second order theta functions, Acta Math 157 (1986), 1-22 Zbl0771.14012MR857677
  17. G.E. Welters, Polarized abelian varieties and the heat equations, Comp. Math 49 (1983), 173-194 Zbl0576.14042MR704390

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.