The small Schottky-Jung locus in positive characteristics different from two
- [1] Università La Sapienza, Dipartimento di Matematica - Instituto G. Castelnuovo, Piazzale Aldo Moro 2, 00185 Roma (Italie)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 1, page 69-106
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAndreatta, Fabrizio. "The small Schottky-Jung locus in positive characteristics different from two." Annales de l’institut Fourier 53.1 (2003): 69-106. <http://eudml.org/doc/116038>.
@article{Andreatta2003,
abstract = {We prove that the locus of Jacobians is an irreducible component of the small Schottky
locus in any characteristic different from $2$. The proof follows an idea of B. van
Geemen in characteristic $0$ and relies on a detailed analysis at the boundary of the $q$-
expansion of the Schottky-Jung relations. We obtain algebraically such relations using
Mumford’s theory of $2$-adic theta functions. We show how the uniformization theory of
semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings, allows the
study of higher dimensional $q$-expansions simplifying the argument.},
affiliation = {Università La Sapienza, Dipartimento di Matematica - Instituto G. Castelnuovo, Piazzale Aldo Moro 2, 00185 Roma (Italie)},
author = {Andreatta, Fabrizio},
journal = {Annales de l’institut Fourier},
keywords = {Schottky-Jung relations; theta functions; Mumford's uniformization},
language = {eng},
number = {1},
pages = {69-106},
publisher = {Association des Annales de l'Institut Fourier},
title = {The small Schottky-Jung locus in positive characteristics different from two},
url = {http://eudml.org/doc/116038},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Andreatta, Fabrizio
TI - The small Schottky-Jung locus in positive characteristics different from two
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 69
EP - 106
AB - We prove that the locus of Jacobians is an irreducible component of the small Schottky
locus in any characteristic different from $2$. The proof follows an idea of B. van
Geemen in characteristic $0$ and relies on a detailed analysis at the boundary of the $q$-
expansion of the Schottky-Jung relations. We obtain algebraically such relations using
Mumford’s theory of $2$-adic theta functions. We show how the uniformization theory of
semiabelian schemes, as developed by D. Mumford, C.-L. Chai and G. Faltings, allows the
study of higher dimensional $q$-expansions simplifying the argument.
LA - eng
KW - Schottky-Jung relations; theta functions; Mumford's uniformization
UR - http://eudml.org/doc/116038
ER -
References
top- F. Andreatta, On Mumford's uniformization and Néron models of Jacobians of semistable curves over complete bases, Moduli of Abelian Varieties 195 (2001), 11-127, Birkhauser Zbl1120.14036
- A. Beauville, Prym varieties and the Schottky problem, Invent. Math 41 (1977), 149-196 Zbl0333.14013MR572974
- S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models, Band 21 (1990), Springer-Verlag Zbl0705.14001MR1045822
- L. Breen, Fonctions thêta et théorème du cube, 980 (1983), Springer-Verlag Zbl0558.14029MR823233
- C.-L. Chai, Compactification of Siegel moduli schemes, London Math. Soc. Lecture Notes Series 107 (1985) Zbl0578.14009MR853543
- R. Donagi, Big Schottky, Invent. Math 89 (1987), 569-599 Zbl0658.14022MR903385
- R. Donagi, The Schottky problem, Theory of Moduli 1337 (1988), 84-137, Springer-Verlag Zbl0676.14008
- G. Faltings, and C.-L. Chai, Degeneration of abelian varieties, Band 22 (1990), Springer-Verlag Zbl0744.14031MR1083353
- B. Van Geemen, Siegel modular forms vanishing on the moduli space of curves, Invent. Math 78 (1984), 329-349 Zbl0568.14015MR767196
- L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985) Zbl0595.14032MR797982
- D. Mumford, On the equations defining abelian varieties 1, 2, 3, Invent. Math 1 ; 3 (1966 ; 1967), 287-358 ; 71--135 ; 215--244 Zbl0219.14024MR219542
- D. Mumford, The structure of the moduli spaces of curves and abelian varieties, Actes Congrès Intern. Math. Tome 1 (1970), 457-465 Zbl0222.14023
- D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Comp. Math 24 (1972), 239-272 Zbl0241.14020MR352106
- D. Mumford, Prym varieties 1, Contributions to analysis (1974), 325-350, Acad. Press, New York Zbl0299.14018
- G. Van Steen, The Schottky-Jung theorem for Mumford curves, Ann. Inst. Fourier (Grenoble) 39 (1989), 1-15 Zbl0658.14015MR1011975
- G.E. Welters, The surface in Jacobi varieties and second order theta functions, Acta Math 157 (1986), 1-22 Zbl0771.14012MR857677
- G.E. Welters, Polarized abelian varieties and the heat equations, Comp. Math 49 (1983), 173-194 Zbl0576.14042MR704390
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.