The Schottky-Jung theorem for Mumford curves

Guido Van Steen

Annales de l'institut Fourier (1989)

  • Volume: 39, Issue: 1, page 1-15
  • ISSN: 0373-0956

Abstract

top
The Schottky-Jung proportionality theorem, from which the Schottky relation for theta functions follows, is proved for Mumford curves, i.e. curves defined over a non-archimedean valued field which are parameterized by a Schottky group.

How to cite

top

Steen, Guido Van. "The Schottky-Jung theorem for Mumford curves." Annales de l'institut Fourier 39.1 (1989): 1-15. <http://eudml.org/doc/74825>.

@article{Steen1989,
abstract = {The Schottky-Jung proportionality theorem, from which the Schottky relation for theta functions follows, is proved for Mumford curves, i.e. curves defined over a non-archimedean valued field which are parameterized by a Schottky group.},
author = {Steen, Guido Van},
journal = {Annales de l'institut Fourier},
keywords = {Schottky-Jung proportionality theorem; theta functions; Mumford curves},
language = {eng},
number = {1},
pages = {1-15},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Schottky-Jung theorem for Mumford curves},
url = {http://eudml.org/doc/74825},
volume = {39},
year = {1989},
}

TY - JOUR
AU - Steen, Guido Van
TI - The Schottky-Jung theorem for Mumford curves
JO - Annales de l'institut Fourier
PY - 1989
PB - Association des Annales de l'Institut Fourier
VL - 39
IS - 1
SP - 1
EP - 15
AB - The Schottky-Jung proportionality theorem, from which the Schottky relation for theta functions follows, is proved for Mumford curves, i.e. curves defined over a non-archimedean valued field which are parameterized by a Schottky group.
LA - eng
KW - Schottky-Jung proportionality theorem; theta functions; Mumford curves
UR - http://eudml.org/doc/74825
ER -

References

top
  1. [1] H.M. FARKAS, I. KRA, Riemann surfaces, Graduate Texts in Mathematics, 71, Berlin, Heidelberg, New York, Springer-Verlag, 1980. Zbl0475.30001MR82c:30067
  2. [2] L. GERRITZEN, Periods and Gauss-Manin Connection for Families of p-adic Schottky Groups, Math. Ann., 275 (1986), 425-453. Zbl0622.14018MR87k:14028
  3. [3] L. GERRITZEN, On Non-Archimedean Representations of Abelian Varieties, Math. Ann., 196, (1972) 323-346. Zbl0255.14013MR46 #7247
  4. [4] L. GERRITZEN, M. VAN DER PUT, Schottky Groups and Mumford Curves, Lecture Notes in Math., 817, Berlin, Heidelberg, New York, Springer-Verlag, 1980. Zbl0442.14009MR82j:10053
  5. [5] F. HERRLICH, Nichtarchimedische Teichmüllerräume, Habitationsschrift, Bochum, Rühr Universität Bochum, 1975. 
  6. [6] D. MUMFORD, Prym varieties I. Contribution to Analysis, New York, Academic Press, 1974. Zbl0299.14018MR52 #415
  7. [7] M. PIWEK, Familien von Schottky-Gruppen, Thesis, Bochum, Rühr Universität, 1986. 
  8. [8] M. VAN DER PUT, Etale Coverings of a Mumford Curve, Ann. Inst. Fourier, 33-1 (1983) 29-52. Zbl0495.14017MR84m:14026
  9. [9] G. VAN STEEN, Non-Archimedean Schottky Groups and Hyperelliptic Curves, Indag. Math., 45-1 (1983), 97-109. Zbl0513.14013MR84h:14030
  10. [10] G. VAN STEEN, Note on Coverings of the Projective Line by Mumford Curves, Bull. Belg. Wisk. Gen., Vol. 38, Fasc. 1, Series B, (1984), 31-38. Zbl0622.14017MR87m:14024
  11. [11] G. VAN STEEN, Prym Varieties for Mumford Curves, Proc. of the Conference on p-adic Analysis, Hengelhoef 1986, 197-207, Vrije Universiteit Brussel, 1987. Zbl0633.14015MR89a:14036

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.