The additive group actions on -homology planes
Kayo Masuda[1]; Masayoshi Miyanishi
- [1] Himeji Institute of Technology, Mathematical Sciences II, 2167 Shosha, Himeji 671-2201 (Japon)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 2, page 429-464
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMasuda, Kayo, and Miyanishi, Masayoshi. "The additive group actions on ${\mathbb {Q}}$-homology planes." Annales de l’institut Fourier 53.2 (2003): 429-464. <http://eudml.org/doc/116042>.
@article{Masuda2003,
abstract = {In this article, we prove that a $\{\mathbb \{Q\}\}$-homology plane $X$ with two algebraically
independent $G_a$-actions is isomorphic to either the affine plane or a quotient of an
affine hypersurface $xy=z^m-1$ in the affine $3$-space via a free $\{\mathbb \{Z\}\}/m\{\mathbb \{Z\}\}$-action, where $m$ is the order of a finite group $H_1(X;\{\mathbb \{Z\}\})$.},
affiliation = {Himeji Institute of Technology, Mathematical Sciences II, 2167 Shosha, Himeji 671-2201 (Japon)},
author = {Masuda, Kayo, Miyanishi, Masayoshi},
journal = {Annales de l’institut Fourier},
keywords = {$\{\mathbb \{Q\}\}$-homology plane; additive group action; Makar-Limanov invariant; -homology plane; additive group actions},
language = {eng},
number = {2},
pages = {429-464},
publisher = {Association des Annales de l'Institut Fourier},
title = {The additive group actions on $\{\mathbb \{Q\}\}$-homology planes},
url = {http://eudml.org/doc/116042},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Masuda, Kayo
AU - Miyanishi, Masayoshi
TI - The additive group actions on ${\mathbb {Q}}$-homology planes
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 429
EP - 464
AB - In this article, we prove that a ${\mathbb {Q}}$-homology plane $X$ with two algebraically
independent $G_a$-actions is isomorphic to either the affine plane or a quotient of an
affine hypersurface $xy=z^m-1$ in the affine $3$-space via a free ${\mathbb {Z}}/m{\mathbb {Z}}$-action, where $m$ is the order of a finite group $H_1(X;{\mathbb {Z}})$.
LA - eng
KW - ${\mathbb {Q}}$-homology plane; additive group action; Makar-Limanov invariant; -homology plane; additive group actions
UR - http://eudml.org/doc/116042
ER -
References
top- T. Bandman, L. Makar-Limanov, Affine surfaces with , Michigan J. Math 49 (2001), 567-582 Zbl1079.14539MR1872757
- J. Bertin, Pinceaux de droites et automorphismes des surfaces affines, J. reine. angew. Math 341 (1983), 32-53 Zbl0501.14028MR697306
- S. Bundagaard, J. Nielsen, On normal subgroups with finite index in F-groups, Math. Tidsskrift B (1951), 56-98 Zbl0044.25403MR48447
- K.-H. Fieseler, On complex affine surfaces with -action, Comment. Math. Helvetici 69 (1994), 5-27 Zbl0806.14033MR1259603
- R. H. Fox, On Fenchel's conjecture about F-groups, Math. Tidsskrift B (1952), 61-65 Zbl0049.15404MR53937
- R.V. Gurjar, M. Miyanishi, On the Jacobian conjecture for -homology planes, J. reine angew. Math 516 (1999), 115-132 Zbl0954.14042MR1724617
- R.V. Gurjar, C.R. Pradeep, -homology planes are rational. III, Osaka J. Math 36 (1999), 259-335 Zbl0954.14013MR1736480
- S. Kaliman, L. Makar-Limanov, On the Russell-Koras contractible threefolds. J. Algebraic Geom, J. Algebraic Geom 6 (1997), 247-268 Zbl0897.14010MR1489115
- K. Masuda, M. Miyanishi, Étale endomorphisms of algebraic surfaces with -actions, Math. Ann 319 (2001), 493-516 Zbl1016.14028MR1819880
- M. Miyanishi, Curves on rational and unirational surfaces, (1978), Springer Zbl0425.14008MR546289
- M. Miyanishi, K. Masuda, Generalized Jacobian conjecture and related topics, Proceedings of the International Colloquium on Algebra, Arithmetic and Geometry, Mumbai 2000, Tata Institute of Fundamental Research (2002), Narosa Zbl1053.14071
- M. Miyanishi, T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ 31 (1991), 755-788 Zbl0790.14034MR1127098
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.