On -disconnected injective models
- [1] Nicholas Copernicus University, Faculty of Mathematics and Computer Science, Chopina 12/18, 87-100 Toruń (Pologne)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 2, page 625-664
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGolasiński, Marek. "On $G$-disconnected injective models." Annales de l’institut Fourier 53.2 (2003): 625-664. <http://eudml.org/doc/116047>.
@article{Golasiński2003,
abstract = {Let $G$ be a finite group. It was observed by L.S. Scull that the original definition of
the equivariant minimality in the $G$-connected case is incorrect because of an error
concerning algebraic properties. In the $G$-disconnected case the orbit category $\{\mathcal \{O\}\}(G)$ was originally replaced by the category $\{\mathcal \{O\}\}(G,X)$ with one object for each
component of each fixed point simplicial subsets $X^H$ of a $G$-simplicial set $X$, for
all subgroups $H\subseteq G$. We redefine the equivariant minimality and redevelop some
results on the rational homotopy theory of disconnected $G$-simplicial sets. To show an
existence of the injective minimal model $\{\mathcal \{M\}\}_X$ for a disconnected $G$-simplicial
set $X$ we replace $\{\mathcal \{O\}\}(G,X)$ by the more subtle category $\tilde\{\mathcal \{O\}\}(G,X)$ with
one object for each 0-simplex of fixed point simplicial subsets $X^H$, for all subgroups
$H\subseteq G$.},
affiliation = {Nicholas Copernicus University, Faculty of Mathematics and Computer Science, Chopina 12/18, 87-100 Toruń (Pologne)},
author = {Golasiński, Marek},
journal = {Annales de l’institut Fourier},
keywords = {differential graded algebra; de Rham algebra; $EI$-category; $i$-elementary extension; $i$-minimal model; linearly compact (complete) $k$-module; Postnikov tower; quasi-isomorphism; rationalization; $G$-simplicial set; EI-category; i-elementary extension; i-minimal model; linearly compact (complete) k-module; G-simplicial set},
language = {eng},
number = {2},
pages = {625-664},
publisher = {Association des Annales de l'Institut Fourier},
title = {On $G$-disconnected injective models},
url = {http://eudml.org/doc/116047},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Golasiński, Marek
TI - On $G$-disconnected injective models
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 625
EP - 664
AB - Let $G$ be a finite group. It was observed by L.S. Scull that the original definition of
the equivariant minimality in the $G$-connected case is incorrect because of an error
concerning algebraic properties. In the $G$-disconnected case the orbit category ${\mathcal {O}}(G)$ was originally replaced by the category ${\mathcal {O}}(G,X)$ with one object for each
component of each fixed point simplicial subsets $X^H$ of a $G$-simplicial set $X$, for
all subgroups $H\subseteq G$. We redefine the equivariant minimality and redevelop some
results on the rational homotopy theory of disconnected $G$-simplicial sets. To show an
existence of the injective minimal model ${\mathcal {M}}_X$ for a disconnected $G$-simplicial
set $X$ we replace ${\mathcal {O}}(G,X)$ by the more subtle category $\tilde{\mathcal {O}}(G,X)$ with
one object for each 0-simplex of fixed point simplicial subsets $X^H$, for all subgroups
$H\subseteq G$.
LA - eng
KW - differential graded algebra; de Rham algebra; $EI$-category; $i$-elementary extension; $i$-minimal model; linearly compact (complete) $k$-module; Postnikov tower; quasi-isomorphism; rationalization; $G$-simplicial set; EI-category; i-elementary extension; i-minimal model; linearly compact (complete) k-module; G-simplicial set
UR - http://eudml.org/doc/116047
ER -
References
top- A.K. Bousfield, V.K.A.M. Gugenheim, On PL de Rham theory and rational homotopy type, Memories of the Amer. Math. Soc. 179 (1976) Zbl0338.55008MR425956
- G. Bredon, Equivariant Cohomology Theories, Lecture Notes in Math vol. 34 (1967) Zbl0162.27202MR206946
- J.-M. Cordier, T. Porter, Homotopy coherent category theory, Trans. Amer. Math. Soc. 349 (1997), 1-54 Zbl0865.18006MR1376543
- P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. vol. 29 (1975), 245-274 Zbl0312.55011MR382702
- B.L. Fine, Disconnected equivariant rational homotopy theory and formality of compact G-Kähler manifolds, (1992)
- B.L. Fine, G.V. Triantafillou, On the equivariant formality of Kähler manifolds with finite group action, Can. J. Math. 45 (1993), 1200-1210 Zbl0805.55009MR1247542
- M. Golasiński, Injective models of G-disconnected simplicial sets, Ann. Inst. Fourier, Grenoble 47 (1997), 1491-1522 Zbl0886.55012MR1600367
- M. Golasiński, Injectivity of functors to modules and , Comm. Algebra 27 (1999), 4027-4038 Zbl0942.18005MR1700197
- M. Golasiński, On the object-wise tensor product of functors to modules, Theory Appl. Categ. 7 (2000), 227-235 Zbl0965.18008MR1779432
- M. Golasiński, Component-wise injective models of functors to , Colloq. Math. 73 (1997), 83-92 Zbl0877.55004MR1436952
- S. Halperin, Lectures on minimal models, Mémories S.M.F., Nouvelle série (1983), 9-10 Zbl0536.55003
- P. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent Groups and Spaces, 15 (1975), Amsterdam Zbl0323.55016MR478146
- S. Lefschetz, Algebraic Topology, Amer. Math. Soc. Colloq. Publ. XXVII (1942) Zbl0061.39302
- D. Lehmann, Théorie homotopique des formes différentielles, 45 (1977), S.M.F. Zbl0367.55008
- W. Lück, Transformation groups and Algebraic K-Theory, 1408 (1989), Springer-Verlag Zbl0679.57022MR1027600
- J.P. May, Simplicial Objects in Algebraic Topology, 11 (1967), Princeton-Toronto-London-Melbourne Zbl0165.26004MR222892
- L.S. Scull, Rational -equivariant homotopy theory, Trans. Amer. Math. Soc. 354 (2002), 1-45 Zbl0989.55009MR1859023
- D. Sullivan, Infinitesimal Computations in Topology, Publ. Math. I.H.E.S. 47 (1977), 269-331 Zbl0374.57002MR646078
- G.V. Triantafillou, Equivariant minimal models, Trans. Amer. Math. Soc. 274 (1982), 509-532 Zbl0516.55010MR675066
- G.V. Triantafillou, An algebraic model for G-homotopy types, Astérisque 113-114 (1984), 312-337 Zbl0564.55009MR749073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.