The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On G -disconnected injective models”

Injective models of G -disconnected simplicial sets

Marek Golasiński (1997)

Annales de l'institut Fourier

Similarity:

We generalize the results by G.V. Triantafillou and B. Fine on G -disconnected simplicial sets. An existence of an injective minimal model for a complete 𝕀 -algebra is presented, for any E I -category 𝕀 . We then make use of the E I -category 𝒪 ( G , X ) associated with a G -simplicial set X to apply these results to the category of G -simplicial sets. Finally, we describe the rational homotopy type of a nilpotent G -simplicial set by means of its injective minimal model.

Cochains and homotopy type

Michael A. Mandell (2006)

Publications Mathématiques de l'IHÉS

Similarity:

Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E algebras is faithful but not full.

Exploring W.G. Dwyer's tame homotopy theory.

Hans Scheerer, Daniel Tanré (1991)

Publicacions Matemàtiques

Similarity:

Let S be the category of r-reduced simplicial sets, r ≥ 3; let L be the category of (r-1)-reduced differential graded Lie algebras over Z. According to the fundamental work [3] of W.G. Dwyer both categories are endowed with closed model category structures such that the associated tame homotopy category of S is equivalent to the associated homotopy category of L. Here we embark on a study of this equivalence and its implications. In particular, we show how to compute homology, cohomology,...

Taylor towers for Γ -modules

Birgit Richter (2001)

Annales de l’institut Fourier

Similarity:

We consider Taylor approximation for functors from the small category of finite pointed sets Γ to modules and give an explicit description for the homology of the layers of the Taylor tower. These layers are shown to be fibrant objects in a suitable closed model category structure. Explicit calculations are presented in characteristic zero including an application to higher order Hochschild homology. A spectral sequence for the homology of the homotopy fibres of this approximation is...