Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants

Constantin Teleman[1]; Christopher Woodward[2]

  • [1] University of Cambridge, DPMMS, CMS, Wilberforce Road, Cambridge CB3 0WB (Grande-Bretagne)
  • [2] Rutgers University, Mathematics, Hill Center, 110 Frelinghuysen Road, Piscataway NJ 08854-8019 (USA)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 3, page 713-748
  • ISSN: 0373-0956

Abstract

top
The set of conjugacy classes appearing in a product of conjugacy classes in a compact, 1 -connected Lie group K can be identified with a convex polytope in the Weyl alcove. In this paper we identify linear inequalities defining this polytope. Each inequality corresponds to a non-vanishing Gromov-Witten invariant for a generalized flag variety G / P , where G is the complexification of K and P is a maximal parabolic subgroup. This generalizes the results for S U ( n ) of Agnihotri and the second author and Belkale on the eigenvalues of a product of unitary matrices and quantum cohomology of Grassmannians.

How to cite

top

Teleman, Constantin, and Woodward, Christopher. "Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants." Annales de l’institut Fourier 53.3 (2003): 713-748. <http://eudml.org/doc/116050>.

@article{Teleman2003,
abstract = {The set of conjugacy classes appearing in a product of conjugacy classes in a compact, $1$-connected Lie group $K$ can be identified with a convex polytope in the Weyl alcove. In this paper we identify linear inequalities defining this polytope. Each inequality corresponds to a non-vanishing Gromov-Witten invariant for a generalized flag variety $G/P$, where $G$ is the complexification of $K$ and $P$ is a maximal parabolic subgroup. This generalizes the results for $SU(n)$ of Agnihotri and the second author and Belkale on the eigenvalues of a product of unitary matrices and quantum cohomology of Grassmannians.},
affiliation = {University of Cambridge, DPMMS, CMS, Wilberforce Road, Cambridge CB3 0WB (Grande-Bretagne); Rutgers University, Mathematics, Hill Center, 110 Frelinghuysen Road, Piscataway NJ 08854-8019 (USA)},
author = {Teleman, Constantin, Woodward, Christopher},
journal = {Annales de l’institut Fourier},
keywords = {conjugacy classes; parabolic bundles; quantum cohomology; generalized flag variety; Grassmannians; Schubert calculus},
language = {eng},
number = {3},
pages = {713-748},
publisher = {Association des Annales de l'Institut Fourier},
title = {Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants},
url = {http://eudml.org/doc/116050},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Teleman, Constantin
AU - Woodward, Christopher
TI - Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 713
EP - 748
AB - The set of conjugacy classes appearing in a product of conjugacy classes in a compact, $1$-connected Lie group $K$ can be identified with a convex polytope in the Weyl alcove. In this paper we identify linear inequalities defining this polytope. Each inequality corresponds to a non-vanishing Gromov-Witten invariant for a generalized flag variety $G/P$, where $G$ is the complexification of $K$ and $P$ is a maximal parabolic subgroup. This generalizes the results for $SU(n)$ of Agnihotri and the second author and Belkale on the eigenvalues of a product of unitary matrices and quantum cohomology of Grassmannians.
LA - eng
KW - conjugacy classes; parabolic bundles; quantum cohomology; generalized flag variety; Grassmannians; Schubert calculus
UR - http://eudml.org/doc/116050
ER -

References

top
  1. S. Agnihotri, C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett 5-6 (1998), 817-836 Zbl1004.14013MR1671192
  2. A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Differential Geom 48 (1998), 445-495 Zbl0948.53045MR1638045
  3. M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. London, Ser. A 308 (1982), 523-615 Zbl0509.14014MR702806
  4. V. Balaji, I. Biswas, D. S. Nagaraj, Principal bundles over projective manifolds with parabolic structure over a divisor, Tohoku Math. J (2) 53 (2001), 337-367 Zbl1070.14506MR1844373
  5. A. Beauville, Y. Laszlo, Un lemme de descente, C. R. Acad. Sci. Paris, Sér. I Math 320 (1995), 335-340 Zbl0852.13005MR1320381
  6. A. Beauville, Y. Laszlo, Ch. Sorger, The Picard group of the moduli of G-bundles on a curve Zbl0976.14024MR1626025
  7. P. Belkale, Local systems on 1 - S for S a finite set, Compositio Math 129 (2001), 67-86 Zbl1042.14031MR1856023
  8. A. Berenstein, R. Sjamaar, Coadjoint orbits, moment polytopes and the Hilbert-Mumford criterion, J. Amer. Math. Soc, (electronic) 13 (2000), 433-466 Zbl0979.53092MR1750957
  9. U. Bhosle, A. Ramanathan, Moduli of parabolic G-bundles on curves, Math. Z 202 (1989), 161-180 Zbl0686.14012MR1013082
  10. I. Biswas, Parabolic bundles as orbifold bundles, Duke Math. J 88 (1997), 305-325 Zbl0955.14010MR1455522
  11. I. Biswas, A criterion for the existence of a parabolic stable bundle of rank two over the projective line, Internat. J. Math 9 (1998), 523-533 Zbl0939.14015MR1644048
  12. H. Boden, Representations of orbifold groups and parabolic bundles, Comment. Math. Helvetici 66 (1991), 389-447 Zbl0758.57013MR1120654
  13. G. D. Daskalopoulos, The topology of the space of stable bundles on a compact Riemann surface, J. Differential Geom 36 (1992), 699-746 Zbl0785.58014MR1189501
  14. G. D. Daskalopoulos, R. A. Wentworth, The Yang-Mills flow near the boundary of Teichmüller space, Math. Ann 318 (2000), 1-42 Zbl0997.53046MR1785574
  15. I. V. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients, with an appendix by Nicolas Ressayre, Inst. Hautes Études Sci. Publ. Math 87 (1998), 5-56 Zbl1001.14018MR1659282
  16. S. K. Donaldson, P. Kronheimer, The geometry of four-manifolds., (1990), Oxford University Press, New York Zbl0820.57002MR1079726
  17. V. G. Drinfeld, C. Simpson, B-structures on G-bundles and local triviality, Math. Res. Lett 2 (1995), 823-829 Zbl0874.14043MR1362973
  18. A. L. Edmonds, R. S. Kulkarni, R. E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc 282 (1984), 773-790 Zbl0603.57001MR732119
  19. M. Entov, K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math 146 (2001), 93-141 Zbl1039.53099MR1859019
  20. G. Faltings, Stable G -bundles and projective connections, J. Algebraic Geom 2 (1993), 507-568 Zbl0790.14019MR1211997
  21. W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry--Santa Cruz 1995 (1997), 45-96, Amer. Math. Soc, Providence, RI Zbl0898.14018
  22. W. Fulton, C. Woodward, Quantum products of Schubert classes, (2001) Zbl1081.14076MR1837123
  23. M. Furuta, B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math 96 (1992), 38-102 Zbl0769.58009MR1185787
  24. M. Gotô, A theorem on compact semi-simple groups, J. Math. Soc. Japan 1 (1949), 270-272 Zbl0041.36208MR33829
  25. A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math 79 (1957), 121-138 Zbl0079.17001MR87176
  26. A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math (1961) Zbl0118.36206MR163909
  27. A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math (1961) Zbl0122.16102MR163910
  28. R. Hartshorne, Algebraic Geometry, volume 52 (1977), Springer-Verlag, Berlin-Heidelberg-New York Zbl0367.14001MR463157
  29. P. Heinzner, F. Kutzschebauch, An equivariant version of Grauert's Oka principle, Invent. Math 119 (1995), 317-346 Zbl0837.32004MR1312503
  30. D. Huybrechts, M. Lehn, Stable pairs on curves and surfaces, J. Algebraic Geom 4 (1995), 67-104 Zbl0839.14023MR1299005
  31. L. C. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces, Math. Ann 298 (1994), 667-692 Zbl0794.53017MR1268599
  32. A. A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), 419-445 Zbl0915.14010MR1654578
  33. A. Knutson, T. Tao, The honeycomb model of g l n ( c ) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc 12 (1999), 1055-1090 Zbl0944.05097MR1671451
  34. A. Knutson, T. Tao, C. Woodward, Honeycombs II: Facets of the Littlewood-Richardson cone Zbl1043.05111
  35. Y. Laszlo, C. Sorger, The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), 499-525 Zbl0918.14004MR1456243
  36. V.B. Mehta, C. S. Seshadri, Moduli of vector bundles on curves with parabolic structure, Math. Ann 248 (1980), 205-239 Zbl0454.14006MR575939
  37. E. Meinrenken, C. Woodward, Hamiltonian loop group actions and Verlinde factorization, Journal of Differential Geometry 50 (1999), 417-470 Zbl0949.37031MR1690736
  38. J. Millson, B. Leeb, Convex functions on symmetric spaces and geometric invariant theory for spaces of weighted configurations on flag manifolds, (2000) 
  39. D. Mumford, The red book of varieties and schemes. Includes the Michigan Lectures (1974) on "curves and their Jacobians", with contributions by Enrico Arbarello, volume 1358 (1999), Springer-Verlag, Berlin Zbl0945.14001MR1748380
  40. P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay. volume 51 (1978) Zbl0411.14003MR546290
  41. C. Pauly, Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J 84 (1996), 217-235 Zbl0877.14031MR1394754
  42. D. Peterson, Lectures on quantum cohomology of G/P.M.I.T, (1997) 
  43. J. Råde, On the Yang-Mills heat equation in two and three dimensions, J. reine angew. Math 431 (1992), 123-163 Zbl0760.58041MR1179335
  44. A. Ramanathan, Moduli for principal bundles over algebraic curves, I, Proc. Indian Acad. Sci. Math. Sci 106 (1996), 301-328 Zbl0901.14007MR1420170
  45. A. Ramanathan, Moduli for principal bundles over algebraic curves, II, Proc. Indian Acad. Sci. Math. Sci 106 (1996), 421-449 Zbl0901.14008MR1425616
  46. J.-P. Serre, Cohomologie galoisienne, (1994), Springer-Verlag, Berlin Zbl0812.12002MR1324577
  47. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980 volume 96 (1982), Société Mathématique de France, Paris Zbl0517.14008
  48. C. T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc 3 (1990), 713-770 Zbl0713.58012MR1040197
  49. P. Slodowy, Two notes on a finiteness problem in the representation theory of finite groups, Algebraic groups and Lie groups volume 9 ; appendix by G. Martin Cram (1997), 331-348, Cambridge Univ. Press, Cambridge Zbl0874.22011
  50. C. Teleman, Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve, Invent. Math 134 (1998), 1-57 Zbl0980.14025MR1646586
  51. C. Teleman, The quantization conjecture revisited, Ann. of Math. (2) 152 (2000), 1-43 Zbl0980.53102MR1792291
  52. M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc 9 (1996), 691-723 Zbl0874.14042MR1333296
  53. A. Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157 Zbl0192.12802MR169956
  54. C. Woodward, On D. Peterson’s comparison formula for Gromov-Witten invariants of G / P  Zbl1077.14085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.