Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants
Constantin Teleman[1]; Christopher Woodward[2]
- [1] University of Cambridge, DPMMS, CMS, Wilberforce Road, Cambridge CB3 0WB (Grande-Bretagne)
- [2] Rutgers University, Mathematics, Hill Center, 110 Frelinghuysen Road, Piscataway NJ 08854-8019 (USA)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 3, page 713-748
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTeleman, Constantin, and Woodward, Christopher. "Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants." Annales de l’institut Fourier 53.3 (2003): 713-748. <http://eudml.org/doc/116050>.
@article{Teleman2003,
abstract = {The set of conjugacy classes appearing in a product of conjugacy classes in a compact,
$1$-connected Lie group $K$ can be identified with a convex polytope in the Weyl alcove.
In this paper we identify linear inequalities defining this polytope. Each inequality
corresponds to a non-vanishing Gromov-Witten invariant for a generalized flag variety
$G/P$, where $G$ is the complexification of $K$ and $P$ is a maximal parabolic subgroup.
This generalizes the results for $SU(n)$ of Agnihotri and the second author and Belkale
on the eigenvalues of a product of unitary matrices and quantum cohomology of
Grassmannians.},
affiliation = {University of Cambridge, DPMMS, CMS, Wilberforce Road, Cambridge CB3 0WB (Grande-Bretagne); Rutgers University, Mathematics, Hill Center, 110 Frelinghuysen Road, Piscataway NJ 08854-8019 (USA)},
author = {Teleman, Constantin, Woodward, Christopher},
journal = {Annales de l’institut Fourier},
keywords = {conjugacy classes; parabolic bundles; quantum cohomology; generalized flag variety; Grassmannians; Schubert calculus},
language = {eng},
number = {3},
pages = {713-748},
publisher = {Association des Annales de l'Institut Fourier},
title = {Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants},
url = {http://eudml.org/doc/116050},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Teleman, Constantin
AU - Woodward, Christopher
TI - Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 713
EP - 748
AB - The set of conjugacy classes appearing in a product of conjugacy classes in a compact,
$1$-connected Lie group $K$ can be identified with a convex polytope in the Weyl alcove.
In this paper we identify linear inequalities defining this polytope. Each inequality
corresponds to a non-vanishing Gromov-Witten invariant for a generalized flag variety
$G/P$, where $G$ is the complexification of $K$ and $P$ is a maximal parabolic subgroup.
This generalizes the results for $SU(n)$ of Agnihotri and the second author and Belkale
on the eigenvalues of a product of unitary matrices and quantum cohomology of
Grassmannians.
LA - eng
KW - conjugacy classes; parabolic bundles; quantum cohomology; generalized flag variety; Grassmannians; Schubert calculus
UR - http://eudml.org/doc/116050
ER -
References
top- S. Agnihotri, C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett 5-6 (1998), 817-836 Zbl1004.14013MR1671192
- A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Differential Geom 48 (1998), 445-495 Zbl0948.53045MR1638045
- M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. London, Ser. A 308 (1982), 523-615 Zbl0509.14014MR702806
- V. Balaji, I. Biswas, D. S. Nagaraj, Principal bundles over projective manifolds with parabolic structure over a divisor, Tohoku Math. J (2) 53 (2001), 337-367 Zbl1070.14506MR1844373
- A. Beauville, Y. Laszlo, Un lemme de descente, C. R. Acad. Sci. Paris, Sér. I Math 320 (1995), 335-340 Zbl0852.13005MR1320381
- A. Beauville, Y. Laszlo, Ch. Sorger, The Picard group of the moduli of G-bundles on a curve Zbl0976.14024MR1626025
- P. Belkale, Local systems on for a finite set, Compositio Math 129 (2001), 67-86 Zbl1042.14031MR1856023
- A. Berenstein, R. Sjamaar, Coadjoint orbits, moment polytopes and the Hilbert-Mumford criterion, J. Amer. Math. Soc, (electronic) 13 (2000), 433-466 Zbl0979.53092MR1750957
- U. Bhosle, A. Ramanathan, Moduli of parabolic G-bundles on curves, Math. Z 202 (1989), 161-180 Zbl0686.14012MR1013082
- I. Biswas, Parabolic bundles as orbifold bundles, Duke Math. J 88 (1997), 305-325 Zbl0955.14010MR1455522
- I. Biswas, A criterion for the existence of a parabolic stable bundle of rank two over the projective line, Internat. J. Math 9 (1998), 523-533 Zbl0939.14015MR1644048
- H. Boden, Representations of orbifold groups and parabolic bundles, Comment. Math. Helvetici 66 (1991), 389-447 Zbl0758.57013MR1120654
- G. D. Daskalopoulos, The topology of the space of stable bundles on a compact Riemann surface, J. Differential Geom 36 (1992), 699-746 Zbl0785.58014MR1189501
- G. D. Daskalopoulos, R. A. Wentworth, The Yang-Mills flow near the boundary of Teichmüller space, Math. Ann 318 (2000), 1-42 Zbl0997.53046MR1785574
- I. V. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients, with an appendix by Nicolas Ressayre, Inst. Hautes Études Sci. Publ. Math 87 (1998), 5-56 Zbl1001.14018MR1659282
- S. K. Donaldson, P. Kronheimer, The geometry of four-manifolds., (1990), Oxford University Press, New York Zbl0820.57002MR1079726
- V. G. Drinfeld, C. Simpson, B-structures on G-bundles and local triviality, Math. Res. Lett 2 (1995), 823-829 Zbl0874.14043MR1362973
- A. L. Edmonds, R. S. Kulkarni, R. E. Stong, Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc 282 (1984), 773-790 Zbl0603.57001MR732119
- M. Entov, K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math 146 (2001), 93-141 Zbl1039.53099MR1859019
- G. Faltings, Stable -bundles and projective connections, J. Algebraic Geom 2 (1993), 507-568 Zbl0790.14019MR1211997
- W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry--Santa Cruz 1995 (1997), 45-96, Amer. Math. Soc, Providence, RI Zbl0898.14018
- W. Fulton, C. Woodward, Quantum products of Schubert classes, (2001) Zbl1081.14076MR1837123
- M. Furuta, B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math 96 (1992), 38-102 Zbl0769.58009MR1185787
- M. Gotô, A theorem on compact semi-simple groups, J. Math. Soc. Japan 1 (1949), 270-272 Zbl0041.36208MR33829
- A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math 79 (1957), 121-138 Zbl0079.17001MR87176
- A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math (1961) Zbl0118.36206MR163909
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math (1961) Zbl0122.16102MR163910
- R. Hartshorne, Algebraic Geometry, volume 52 (1977), Springer-Verlag, Berlin-Heidelberg-New York Zbl0367.14001MR463157
- P. Heinzner, F. Kutzschebauch, An equivariant version of Grauert's Oka principle, Invent. Math 119 (1995), 317-346 Zbl0837.32004MR1312503
- D. Huybrechts, M. Lehn, Stable pairs on curves and surfaces, J. Algebraic Geom 4 (1995), 67-104 Zbl0839.14023MR1299005
- L. C. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces, Math. Ann 298 (1994), 667-692 Zbl0794.53017MR1268599
- A. A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1998), 419-445 Zbl0915.14010MR1654578
- A. Knutson, T. Tao, The honeycomb model of tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc 12 (1999), 1055-1090 Zbl0944.05097MR1671451
- A. Knutson, T. Tao, C. Woodward, Honeycombs II: Facets of the Littlewood-Richardson cone Zbl1043.05111
- Y. Laszlo, C. Sorger, The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), 499-525 Zbl0918.14004MR1456243
- V.B. Mehta, C. S. Seshadri, Moduli of vector bundles on curves with parabolic structure, Math. Ann 248 (1980), 205-239 Zbl0454.14006MR575939
- E. Meinrenken, C. Woodward, Hamiltonian loop group actions and Verlinde factorization, Journal of Differential Geometry 50 (1999), 417-470 Zbl0949.37031MR1690736
- J. Millson, B. Leeb, Convex functions on symmetric spaces and geometric invariant theory for spaces of weighted configurations on flag manifolds, (2000)
- D. Mumford, The red book of varieties and schemes. Includes the Michigan Lectures (1974) on "curves and their Jacobians", with contributions by Enrico Arbarello, volume 1358 (1999), Springer-Verlag, Berlin Zbl0945.14001MR1748380
- P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay. volume 51 (1978) Zbl0411.14003MR546290
- C. Pauly, Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J 84 (1996), 217-235 Zbl0877.14031MR1394754
- D. Peterson, Lectures on quantum cohomology of G/P.M.I.T, (1997)
- J. Råde, On the Yang-Mills heat equation in two and three dimensions, J. reine angew. Math 431 (1992), 123-163 Zbl0760.58041MR1179335
- A. Ramanathan, Moduli for principal bundles over algebraic curves, I, Proc. Indian Acad. Sci. Math. Sci 106 (1996), 301-328 Zbl0901.14007MR1420170
- A. Ramanathan, Moduli for principal bundles over algebraic curves, II, Proc. Indian Acad. Sci. Math. Sci 106 (1996), 421-449 Zbl0901.14008MR1425616
- J.-P. Serre, Cohomologie galoisienne, (1994), Springer-Verlag, Berlin Zbl0812.12002MR1324577
- C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Notes written by J.-M. Drezet from a course at the École Normale Supérieure, June 1980 volume 96 (1982), Société Mathématique de France, Paris Zbl0517.14008
- C. T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc 3 (1990), 713-770 Zbl0713.58012MR1040197
- P. Slodowy, Two notes on a finiteness problem in the representation theory of finite groups, Algebraic groups and Lie groups volume 9 ; appendix by G. Martin Cram (1997), 331-348, Cambridge Univ. Press, Cambridge Zbl0874.22011
- C. Teleman, Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve, Invent. Math 134 (1998), 1-57 Zbl0980.14025MR1646586
- C. Teleman, The quantization conjecture revisited, Ann. of Math. (2) 152 (2000), 1-43 Zbl0980.53102MR1792291
- M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc 9 (1996), 691-723 Zbl0874.14042MR1333296
- A. Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157 Zbl0192.12802MR169956
- C. Woodward, On D. Peterson’s comparison formula for Gromov-Witten invariants of Zbl1077.14085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.