Variation of geometric invariant theory quotients
Publications Mathématiques de l'IHÉS (1998)
- Volume: 87, page 5-51
- ISSN: 0073-8301
Access Full Article
topHow to cite
topDolgachev, Igor V., and Hu, Yi. "Variation of geometric invariant theory quotients." Publications Mathématiques de l'IHÉS 87 (1998): 5-51. <http://eudml.org/doc/104132>.
@article{Dolgachev1998,
author = {Dolgachev, Igor V., Hu, Yi},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {group actions; geometric quotients; wall; geometric invariant theory; symplectic geometry; chamber; Mori flip; symplectic reductions; algebraic moduli problems; limit quotients},
language = {eng},
pages = {5-51},
publisher = {Institut des Hautes Études Scientifiques},
title = {Variation of geometric invariant theory quotients},
url = {http://eudml.org/doc/104132},
volume = {87},
year = {1998},
}
TY - JOUR
AU - Dolgachev, Igor V.
AU - Hu, Yi
TI - Variation of geometric invariant theory quotients
JO - Publications Mathématiques de l'IHÉS
PY - 1998
PB - Institut des Hautes Études Scientifiques
VL - 87
SP - 5
EP - 51
LA - eng
KW - group actions; geometric quotients; wall; geometric invariant theory; symplectic geometry; chamber; Mori flip; symplectic reductions; algebraic moduli problems; limit quotients
UR - http://eudml.org/doc/104132
ER -
References
top- [At] M. ATIYAH, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15. Zbl0482.58013MR83e:53037
- [B-B] A. BIALYNICKI-BIRULA, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973), 480-497. Zbl0275.14007MR51 #3186
- [B-BS] A. BIALYNICKI-BIRULA and A. SOMMESE, Quotients by C* and SL(2, C) actions, Trans. Amer. Math. Soc. 279 (1983), 773-800. Zbl0566.32026MR85i:32045
- [Bo] N. BOURBAKI, Commutative Algebra, Berlin, New York, Springer-Verlag, 1989. MR90a:13001
- [Br] M. BRION, Sur l'image de l'application moment, in "Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin", Lecture Notes in Math. 1296, Paris, 1986, 177-193. Zbl0667.58012MR89i:32062
- [BP] M. BRION and C. PROCESI, Action d'un tore dans une variété projective, in "Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory", Progress in Mathematics 192 (1990), Birkhäuser, 509-539. Zbl0741.14028MR92m:14061
- [GM] M. GORESKY and R. MACPHERSON, On the topology of algebraic torus actions, in "Algebraic Groups, Utrecht 1986", Lect. Notes in Math. 1271 (1986), 73-90. Zbl0633.14025MR89a:14064
- [GS] V. GUILLEMIN and S. STERNBERG, Birational equivalence in the symplectic category, Invent. Math. 97 (1989), 485-522. Zbl0683.53033MR90f:58060
- [He] W. HESSELINK, Desingularization of varieties of null forms, Invent. Math. 55 (1979), 141-163. Zbl0401.14006MR81b:14025
- [Hu1] Y. HU, The geometry and topology of quotient varieties of torus actions, Duke Math. Journal 68 (1992), 151-183. Zbl0812.14031MR93k:14019a
- [Hu2] Y. HU, (W, R) matroids and thin Schubert-type cells attached to algebraic torus actions, Proc. of Amer. Math. Soc. 123 No. 9 (1995), 2607-2617. Zbl0867.14020MR95k:14068
- [Ke] G. KEMPF, Instability in invariant theory, Ann. of Math. 108 (1978), 299-316. Zbl0406.14031MR80c:20057
- [KN] G. KEMPF and L. NESS, The length of vectors in representation spaces, in "Algebraic geometry, Copenhagen 1978", Lecture Notes in Math. 732 (1979), Springer-Verlag, 233-243. Zbl0407.22012MR81i:14032
- [Ki1] F. KIRWAN, Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, 1984. Zbl0553.14020MR86i:58050
- [Ki2] F. KIRWAN, Partial desingularization of quotients of nonsinguler varieties and their Betti numbers, Annals of Math. 122 (1985), 41-85. Zbl0592.14011MR87a:14010
- [KKV] F. KNOP, H. KRAFT, T. VUST, The Picard group of a G-variety, in "Algebraic transformation groups and invariant theory", DMV Seminar, B. 13, Birkhäuser, 1989, 77-87. Zbl0705.14005MR1044586
- [K1] S. KLEIMAN, Towards a numerical criterion of ampleness, Annals of Math. (2) 84 (1966), 293-344. Zbl0146.17001MR34 #5834
- [KSZ] M. KAPRANOV, B. STURMFELS, A. ZELEVINSKY, Quotients of toric varieties, Math. Ann. 290 (1991), 643-655. Zbl0762.14023MR92g:14050
- [Li] D. LIEBERMAN, Compactness of the Chow scheme : applications to automorphisms and deformations of Kähler manifolds, in "Séminaire François Norguet 1975/77", Lect. Notes in Math. 670 (1978), 140-186. Zbl0391.32018MR80h:32056
- [MFK] D. MUMFORD, J. FOGARTY, F. KIRWAN, Geometric Invariant Theory, 3rd edition, Berlin, New York, Springer-Verlag, 1994. Zbl0797.14004MR95m:14012
- [Ne1] L. NESS, Mumford's numerical function and stable projective hypersurfaces, in "Algebraic geometry, Copenhagen 1978", Lecture Notes in Math. 732 (1979), Springer-Verlag, 417-453. Zbl0442.14019MR81e:14008
- [Ne2] L. NESS, A stratification of the null cone via the moment map, Amer. Jour. of Math. 106 (1984), 1281-1325. Zbl0604.14006MR86c:14010
- [Re] M. REID, What is a flip, preprint, Utah, 1992, 17 p.
- [Res] N. RESSAYRE, Variation de quotients en théorie des invariants, Mémoire de DEA ENS-Lyon, septembre 1996.
- [Sj] R. SJAMAAR, Holomorphic slices, symplectic reduction and multiplicities of representations, Annals of Math. 141 (1995), 87-129. Zbl0827.32030MR96a:58098
- [Th1] M. THADDEUS, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), 317-353. Zbl0882.14003MR95e:14006
- [Th2] M. THADDEUS, Geometric invariant theory and flips, Journal of the American Math. Society (to appear). Zbl0874.14042
Citations in EuDML Documents
top- Jacopo Stoppa, Richard P. Thomas, Hilbert schemes and stable pairs: GIT and derived category wall crossings
- Francesca Incensi, GIT quotients of products of projective planes
- Nicolas Ressayre, Geometric Invariant Theory and Generalized Eigenvalue Problem II
- Constantin Teleman, Christopher Woodward, Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.