Analytic extension from non-pseudoconvex boundaries and -convexity
Christine Laurent-Thiébaut[1]; Egmon Porten[2]
- [1] Université Joseph Fourier, Institut Fourier, BP 74, 3802 Saint-Martin d'Hères Cedex (France)
- [2] Humboldt-University, Mathematics Department, Rudower Chaussee 25, 12489 Berlin (Allemagne)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 3, page 847-857
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLaurent-Thiébaut, Christine, and Porten, Egmon. "Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity." Annales de l’institut Fourier 53.3 (2003): 847-857. <http://eudml.org/doc/116055>.
@article{Laurent2003,
abstract = {Let $D\subset \subset \{\mathbb \{C\}\}^n,n\ge 2$, be a domain with $C^2$-boundary and
$K\subset \partial D$ be a compact set such that $\partial D\backslash K$ is connected. We
study univalent analytic extension of CR-functions from $\partial D\backslash K$ to parts
of $D$. Call $K$ CR-convex if its $A(D)$-convex hull, $A(D)-\{\rm hull\}(K)$, satisfies
$K=\partial D\cap A(D)-\{\rm hull\}(K)$ ($A(D)$ denoting the space of functions, which are
holomorphic on $D$ and continuous up to $\partial D$). The main theorem of the paper
gives analytic extension to $\partial D\backslash A(D)-\{\rm hull\}(K)$, if $K$ is CR-
convex.},
affiliation = {Université Joseph Fourier, Institut Fourier, BP 74, 3802 Saint-Martin d'Hères Cedex (France); Humboldt-University, Mathematics Department, Rudower Chaussee 25, 12489 Berlin (Allemagne)},
author = {Laurent-Thiébaut, Christine, Porten, Egmon},
journal = {Annales de l’institut Fourier},
keywords = {holomorphic hulls and holomorphic convexity; CR functions; removable singularities; holomorphic hulls; holomorphic convexity; analytic extension; CR-convex},
language = {eng},
number = {3},
pages = {847-857},
publisher = {Association des Annales de l'Institut Fourier},
title = {Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity},
url = {http://eudml.org/doc/116055},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Laurent-Thiébaut, Christine
AU - Porten, Egmon
TI - Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 847
EP - 857
AB - Let $D\subset \subset {\mathbb {C}}^n,n\ge 2$, be a domain with $C^2$-boundary and
$K\subset \partial D$ be a compact set such that $\partial D\backslash K$ is connected. We
study univalent analytic extension of CR-functions from $\partial D\backslash K$ to parts
of $D$. Call $K$ CR-convex if its $A(D)$-convex hull, $A(D)-{\rm hull}(K)$, satisfies
$K=\partial D\cap A(D)-{\rm hull}(K)$ ($A(D)$ denoting the space of functions, which are
holomorphic on $D$ and continuous up to $\partial D$). The main theorem of the paper
gives analytic extension to $\partial D\backslash A(D)-{\rm hull}(K)$, if $K$ is CR-
convex.
LA - eng
KW - holomorphic hulls and holomorphic convexity; CR functions; removable singularities; holomorphic hulls; holomorphic convexity; analytic extension; CR-convex
UR - http://eudml.org/doc/116055
ER -
References
top- E.M. Chirka, Analytic sets, (1989), Dordrecht Zbl0683.32002
- E.M. Chirka, Radó's theorem for CR mappings of hypersurfaces, Russian Acad. Sci. Sb. Math 82 (1995), 243-259 Zbl0848.32011MR1280401
- E.M. Chirka, E. L. Stout, Removable singularities in the boundary, Contributions to Complex Analysis and Analytic Geometry E26 (1994), 43-104, Vieweg Zbl0820.32008
- S.J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa 22 (1968), 275-314 Zbl0159.37502MR237816
- B. Jöricke, Some remarks concerning holomorphically convex hulls and envelopes of holomorphy, Math. Z 218 (1995), 143-157 Zbl0816.32011MR1312583
- B. Jöricke, Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Analysis 6 (1996), 555-611 Zbl0917.32007MR1601405
- B. Jöricke, E. Porten, Hulls and Analytic Extension from non-pseudoconvex Boundaries, (19, Feb. 2002)
- C. Laurent-Thiébaut, Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (IV) 150 (1988), 1-21 Zbl0646.32010MR946033
- G. Lupacciolu, A theorem on holomorphic extension of CR-functions, Pacific J. Math 128 (1986), 177-191 Zbl0597.32014MR850675
- G. Lupacciolu, Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat 32 (1994), 455-473 Zbl0823.32004MR1318542
- J. Milnor, Morse Theory, (1963), Princeton, N.J. Zbl0108.10401MR163331
- J.Ma. Ortega Aramburu, On Gleason’s decomposition for , Math. Zeitschr 194 (1987), 565-571 Zbl0595.32019MR881710
- E. Porten, Hebbare Singularitäten von CR-Funktionen und analytische Fortsetzung von Teilen nicht-pseudokonvexer Ränder, (1997), Berlin
- E.L. Stout, Analytic continuation of functions of several complex variables, Proc. Royal Soc. Edinburgh 89A (1981), 63-74 Zbl0491.32007MR628129
- H.J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc 180 (1973), 171-188 Zbl0274.58002MR321133
- J.-M. Trépreau, Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe , Invent. Math 83 (1986), 583-592 Zbl0586.32016MR827369
- J.-M. Trépreau, Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. Fr 118 (1990), 403-450 Zbl0742.58053MR1090408
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.