Analytic extension from non-pseudoconvex boundaries and A ( D ) -convexity

Christine Laurent-Thiébaut[1]; Egmon Porten[2]

  • [1] Université Joseph Fourier, Institut Fourier, BP 74, 3802 Saint-Martin d'Hères Cedex (France)
  • [2] Humboldt-University, Mathematics Department, Rudower Chaussee 25, 12489 Berlin (Allemagne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 3, page 847-857
  • ISSN: 0373-0956

Abstract

top
Let D n , n 2 , be a domain with C 2 -boundary and K D be a compact set such that D K is connected. We study univalent analytic extension of CR-functions from D K to parts of D . Call K CR-convex if its A ( D ) -convex hull, A ( D ) - hull ( K ) , satisfies K = D A ( D ) - hull ( K ) ( A ( D ) denoting the space of functions, which are holomorphic on D and continuous up to D ). The main theorem of the paper gives analytic extension to D A ( D ) - hull ( K ) , if K is CR- convex.

How to cite

top

Laurent-Thiébaut, Christine, and Porten, Egmon. "Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity." Annales de l’institut Fourier 53.3 (2003): 847-857. <http://eudml.org/doc/116055>.

@article{Laurent2003,
abstract = {Let $D\subset \subset \{\mathbb \{C\}\}^n,n\ge 2$, be a domain with $C^2$-boundary and $K\subset \partial D$ be a compact set such that $\partial D\backslash K$ is connected. We study univalent analytic extension of CR-functions from $\partial D\backslash K$ to parts of $D$. Call $K$ CR-convex if its $A(D)$-convex hull, $A(D)-\{\rm hull\}(K)$, satisfies $K=\partial D\cap A(D)-\{\rm hull\}(K)$ ($A(D)$ denoting the space of functions, which are holomorphic on $D$ and continuous up to $\partial D$). The main theorem of the paper gives analytic extension to $\partial D\backslash A(D)-\{\rm hull\}(K)$, if $K$ is CR- convex.},
affiliation = {Université Joseph Fourier, Institut Fourier, BP 74, 3802 Saint-Martin d'Hères Cedex (France); Humboldt-University, Mathematics Department, Rudower Chaussee 25, 12489 Berlin (Allemagne)},
author = {Laurent-Thiébaut, Christine, Porten, Egmon},
journal = {Annales de l’institut Fourier},
keywords = {holomorphic hulls and holomorphic convexity; CR functions; removable singularities; holomorphic hulls; holomorphic convexity; analytic extension; CR-convex},
language = {eng},
number = {3},
pages = {847-857},
publisher = {Association des Annales de l'Institut Fourier},
title = {Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity},
url = {http://eudml.org/doc/116055},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Laurent-Thiébaut, Christine
AU - Porten, Egmon
TI - Analytic extension from non-pseudoconvex boundaries and $A(D)$-convexity
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 847
EP - 857
AB - Let $D\subset \subset {\mathbb {C}}^n,n\ge 2$, be a domain with $C^2$-boundary and $K\subset \partial D$ be a compact set such that $\partial D\backslash K$ is connected. We study univalent analytic extension of CR-functions from $\partial D\backslash K$ to parts of $D$. Call $K$ CR-convex if its $A(D)$-convex hull, $A(D)-{\rm hull}(K)$, satisfies $K=\partial D\cap A(D)-{\rm hull}(K)$ ($A(D)$ denoting the space of functions, which are holomorphic on $D$ and continuous up to $\partial D$). The main theorem of the paper gives analytic extension to $\partial D\backslash A(D)-{\rm hull}(K)$, if $K$ is CR- convex.
LA - eng
KW - holomorphic hulls and holomorphic convexity; CR functions; removable singularities; holomorphic hulls; holomorphic convexity; analytic extension; CR-convex
UR - http://eudml.org/doc/116055
ER -

References

top
  1. E.M. Chirka, Analytic sets, (1989), Dordrecht Zbl0683.32002
  2. E.M. Chirka, Radó's theorem for CR mappings of hypersurfaces, Russian Acad. Sci. Sb. Math 82 (1995), 243-259 Zbl0848.32011MR1280401
  3. E.M. Chirka, E. L. Stout, Removable singularities in the boundary, Contributions to Complex Analysis and Analytic Geometry E26 (1994), 43-104, Vieweg Zbl0820.32008
  4. S.J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa 22 (1968), 275-314 Zbl0159.37502MR237816
  5. B. Jöricke, Some remarks concerning holomorphically convex hulls and envelopes of holomorphy, Math. Z 218 (1995), 143-157 Zbl0816.32011MR1312583
  6. B. Jöricke, Deformation of CR-manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Analysis 6 (1996), 555-611 Zbl0917.32007MR1601405
  7. B. Jöricke, E. Porten, Hulls and Analytic Extension from non-pseudoconvex Boundaries, (19, Feb. 2002) 
  8. C. Laurent-Thiébaut, Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (IV) 150 (1988), 1-21 Zbl0646.32010MR946033
  9. G. Lupacciolu, A theorem on holomorphic extension of CR-functions, Pacific J. Math 128 (1986), 177-191 Zbl0597.32014MR850675
  10. G. Lupacciolu, Characterization of removable sets in strongly pseudoconvex boundaries, Ark. Mat 32 (1994), 455-473 Zbl0823.32004MR1318542
  11. J. Milnor, Morse Theory, (1963), Princeton, N.J. Zbl0108.10401MR163331
  12. J.Ma. Ortega Aramburu, On Gleason’s decomposition for A ( D ¯ ) , Math. Zeitschr 194 (1987), 565-571 Zbl0595.32019MR881710
  13. E. Porten, Hebbare Singularitäten von CR-Funktionen und analytische Fortsetzung von Teilen nicht-pseudokonvexer Ränder, (1997), Berlin 
  14. E.L. Stout, Analytic continuation of functions of several complex variables, Proc. Royal Soc. Edinburgh 89A (1981), 63-74 Zbl0491.32007MR628129
  15. H.J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Am. Math. Soc 180 (1973), 171-188 Zbl0274.58002MR321133
  16. J.-M. Trépreau, Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe 𝒞 2 , Invent. Math 83 (1986), 583-592 Zbl0586.32016MR827369
  17. J.-M. Trépreau, Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. Fr 118 (1990), 403-450 Zbl0742.58053MR1090408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.