Cauchy-Riemann equations in several variables
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1968)
- Volume: 22, Issue: 2, page 275-314
- ISSN: 0391-173X
Access Full Article
topHow to cite
topGreenfield, S. J.. "Cauchy-Riemann equations in several variables." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.2 (1968): 275-314. <http://eudml.org/doc/83459>.
@article{Greenfield1968,
author = {Greenfield, S. J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {complex functions},
language = {eng},
number = {2},
pages = {275-314},
publisher = {Scuola normale superiore},
title = {Cauchy-Riemann equations in several variables},
url = {http://eudml.org/doc/83459},
volume = {22},
year = {1968},
}
TY - JOUR
AU - Greenfield, S. J.
TI - Cauchy-Riemann equations in several variables
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1968
PB - Scuola normale superiore
VL - 22
IS - 2
SP - 275
EP - 314
LA - eng
KW - complex functions
UR - http://eudml.org/doc/83459
ER -
References
top- [1] Behnkf, H., Généralisation du théorème de Runge pour les fonctions multiformes de variablescomplexes, Colloque sur les Fonctions de Plusieurs Variables, (Brussels, 1953). Zbl0052.08603
- [2] Bishop, E.Differentiable manifolds in complex Euclidean space, Duke Math. J., (1965), 1-22. Zbl0154.08501MR200476
- [3] », A minimal boundary for function algebras, Pacific J. Math., 9 (1959), 629-642. Zbl0087.28503MR109305
- [4] Bochner, S., and Martin, W.T., Several Complex Variables (Princeton University Press, 1948). Zbl0041.05205MR27863
- [5] Bremermann, H.J., Die Characterisierung Rungescher Gebiete durch plurisubharmonische Funktionen, Math. Ann., 136 (1958), 173-186. Zbl0089.05902MR101921
- [6] Greenfield, S., Extendibility properties of real submanifolds of Cn, to appear in the proceeding of the C.I.M.E. Summer Conferenoe on Bounded Homogeneous Domains, Urbino, 1967. Zbl0169.09902
- [7] Gray, J.W., Some global properties of contact structures, Ann. Math., 69 (1959), 421-450. Zbl0092.39301MR112161
- [8] Gunning, R.C., and Rossi, H., Analytic Functions of Several Complex Variables (Prentice-Hall, Inc.1965). Zbl0141.08601MR180696
- [9] Hermann, R., Convexity and pseudoconvexity for complex manifolds, 13 (1964), J. Math. Mech., 667-672. Zbl0123.38705MR167995
- [10] » , Convexity and pseudoconvexity for complex manifolds, II, to appear.
- [11] Hörmander, L., An Introduction to Complex Analysis in Several Variables, (D. Van Nostrand Company, Inc, 1966). Zbl0138.06203MR203075
- [12], The Frobenius-Nirenberg theorem, Arkiv for Matematik, 5 (1964), 425-432. Zbl0136.09104MR178222
- [13] Kodaira, K., and Spencer, D.C., On deformations of complex analytic structures, I, II, Ann. Math., 67 (1958), 328-466. Zbl0128.16901MR112154
- [14] Kohn, J.J., Boundaries of complex manifolds, Proceedings of the Conference on Complex Analysis (Springer-Verlag New York Inc., 1965). Zbl0166.36003MR175149
- [15] Lewy, H., On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. Math., 64 (1956), 514-522. Zbl0074.06204MR81952
- [16] » , On hulls of holomorphy, Comm. Pure Appl. Math., 13 (1960), 587-591. Zbl0113.06102MR150339
- [17] » Atypical partial differential equations, Proceedings of the Conference on Partial Differential Equations and Continuum Mechanics, (Univ. of Wisc. Press, 1961). Zbl0122.10006MR177176
- [18] Milnor, J., Topology from the Differentiable Viewpoint, (Univ. Press of Virginia, 1965). Zbl0136.20402MR226651
- [19] Newlander, A., and Nirenberg, L., Complex analytic coordinates in almost complex manifolds, Ann. Math., 65 (1957), 391-404. Zbl0079.16102MR88770
- [20] Nirenberg, L., A complex Frobenius theorem, Seminars on Analytic Functions (Institute for Advanced Study United States Air Force Office of Scientific Research, 1957). Zbl0099.37502
- [21] Nirenberg, R., and Wells, R.O., Holomorphic Approximation on Real Submanifolds of Complex Manifolds. A.M.S. May 1967. Zbl0162.10402
- [22] Nomizu, K., Lie Groups and Differential Geometry (The Math. Soc. of Japan, 1956). Zbl0071.15402MR84166
- [23] Harvey, R., and Wells, R.O., to appear Trans. A.M.S.
- [24] Rossi, H., Holomorphically convex sets in several complex variables, Ann. Math., 74 (1961), 470-493. Zbl0107.28601MR133479
- [25] Roasi, H., Global Theroy of Several Complex Variables, lecture notes by Lutz Bungart (Princeton Univ.1961).
- [26] » , report to appear in the Proceedings of the International Congress of Mathematicians (Moscow, 1966).
- [27] Sasaki, S., On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tohoku Math, J., 12 (1960), 459-476. Zbl0192.27903MR123263
- [28] Sommer, F., Analytische Geometrie in Cn (Schriftenreihe des Mathematischen Instituts der Universität Münster Heft 11, 1957). Zbl0077.14401MR85534
- [29] Steenrod, N., The Theory of Fiber Bundles (Princeton Univ. Press.1951). Zbl0054.07103
- [30] Sweeney, W., written communication.
- [31] Tomassini, G., Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. della Sc. Norm. Sup. di Pisa, 20 (1966), 31-44. Zbl0154.33501MR206992
- [32] Weinstock, B., On Holomorphic Extension from Real Submanifolds of Complex Èuclidean Space (M.I.T thesis, 1966).
- [33] Wells, R.O., On the local holomorphic hull of a real submanifold in several complex, variables, Comm. Pure Appl. Math., 19 (1966), 145-165. Zbl0142.33901MR197785
- [34] » Holomorphic approximation on real-analytic submanifolds of a complex manifoldProc. A.M.S., 17 (1966), 1272-1275. Zbl0153.10103MR200946
- [35] » Holomorphic hulls and holomorphic convexity of differentiable submanifolds. to appear Trans. A.M.S. Zbl0159.37702
Citations in EuDML Documents
top- C. Denson Hill, Geraldine Taiani, Real analytic approximation of locally embeddable CR manifolds
- C. Denson Hill, Geraldine Taiani, Families of analytic discs in with boundaries on a prescribed submanifold
- R. O., Jr. Wells, Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold
- Aldo Andreotti, C. Denson Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations
- H. Rossi, M. Vergne, Équations de Cauchy-Riemann tangentielles associées à un domaine de Siegel
- Elisabetta Barletta, Sorin Dragomir, Differential equations on contact riemannian manifolds
- Aldo Andreotti, Gregory A. Fredricks, Embeddability of real analytic Cauchy-Riemann manifolds
- Christine Laurent-Thiébaut, Egmon Porten, Analytic extension from non-pseudoconvex boundaries and -convexity
- Salla Franzén, Burglind Jöricke, On propagation of boundary continuity of holomorphic functions of several variables
- Andreas Krüger, Homogeneous Cauchy-Riemann structures
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.