Painlevé equations and complex reflections
- [1] Columbia University, Department of Mathematics, 2990 Broadway, New York NY 10027 (USA)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 4, page 1009-1022
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoalch, Philip. "Painlevé equations and complex reflections." Annales de l’institut Fourier 53.4 (2003): 1009-1022. <http://eudml.org/doc/116060>.
@article{Boalch2003,
abstract = {We will explain how some new algebraic solutions of the sixth Painlevé equation arise
from complex reflection groups, thereby extending some results of Hitchin and Dubrovin--
Mazzocco for real reflection groups. The problem of finding explicit formulae for these
solutions will be addressed elsewhere.},
affiliation = {Columbia University, Department of Mathematics, 2990 Broadway, New York NY 10027 (USA)},
author = {Boalch, Philip},
journal = {Annales de l’institut Fourier},
keywords = {Painlevé equations; isomonodromic deformations; non abelian cohomology; complex reflections; Painlevé equation; braid group},
language = {eng},
number = {4},
pages = {1009-1022},
publisher = {Association des Annales de l'Institut Fourier},
title = {Painlevé equations and complex reflections},
url = {http://eudml.org/doc/116060},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Boalch, Philip
TI - Painlevé equations and complex reflections
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1009
EP - 1022
AB - We will explain how some new algebraic solutions of the sixth Painlevé equation arise
from complex reflection groups, thereby extending some results of Hitchin and Dubrovin--
Mazzocco for real reflection groups. The problem of finding explicit formulae for these
solutions will be addressed elsewhere.
LA - eng
KW - Painlevé equations; isomonodromic deformations; non abelian cohomology; complex reflections; Painlevé equation; braid group
UR - http://eudml.org/doc/116060
ER -
References
top- P.P. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. in Math 163 (2001), 137-205 Zbl1001.53059MR1864833
- P.P. Boalch, G-bundles, isomonodromy and quantum Weyl groups, Int. Math. Res. Not. (2002), 1129-1166 Zbl1003.58028MR1904670
- M. Broué, G. Malle, J. Michel, Towards spetses. I, Dedicated to the memory of Claude Chevalley 4, no 2-3 (1999), 157-218 Zbl0972.20024
- C. De Concini, V. G. Kac, C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc 5 (1992), 151-189 Zbl0747.17018MR1124981
- C. F. Doran, Algebraic and geometric isomonodromic deformations, J. Differential Geom. 59 (2001), 33-85 Zbl1043.34098MR1909248
- B. Dubrovin, Painlevé transcendents in two-dimensional topological field theory, The Painlevé property (1999), 287-412, Springer, New York Zbl1026.34095
- B. Dubrovin, M. Mazzocco, Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (2000), 55-147 Zbl0960.34075MR1767271
- N. J. Hitchin, Frobenius manifolds, Gauge Theory and Symplectic Geometry, vol. 488 (1995), Kluwer Zbl0867.53027
- N. J. Hitchin, Poncelet polygons and the Painlevé equations, Geometry and analysis (Bombay, 1992) MR 97d:32042 (1995), 151-185 Zbl0893.32018
- N. J. Hitchin, Geometrical aspects of Schlesinger's equation, J. Geom. Phys. 23 (1997), 287-300 Zbl0896.53011MR1484592
- N. J. Hitchin, Quartic curves and icosahedra, talk at Edinburgh, September (1998)
- M. Jimbo, Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci. 18 (1982), 1137-1161 Zbl0535.34042MR688949
- M. Jimbo, T. Miwa, Monodromy preserving deformations of linear differential equations with rational coefficients II, Physica 2D (1981), 407-448 Zbl1194.34166MR625446
- L. Katzarkov, T. Pantev, C. Simpson, Density of monodromy actions on non-abelian cohomology Zbl1098.14012
- G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274-304 Zbl0055.14305MR59914
- B. Totaro, Towards a Schubert calculus for complex reflection groups Zbl1045.05088MR1937794
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.