From multi-instantons to exact results

Jean Zinn-Justin[1]

  • [1] CEA, Service de Physique Théorique de Saclay, CNRS URA 2306, 91191 Gif-sur-Yvette Cedex (France)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 4, page 1259-1285
  • ISSN: 0373-0956

Abstract

top
In these notes, conjectures about the exact semi-classical expansion of eigenvalues of hamiltonians corresponding to potentials with degenerate minima, are recalled. They were initially motivated by semi-classical calculations of quantum partition functions using a path integral representation and have later been proven to a large extent, using the theory of resurgent functions. They take the form of generalized Bohr--Sommerfeld quantization formulae. We explain here their relation with the corresponding WKB expansion of the Schrödinger equation. We show how these conjectures naturally emerge from an evaluation of multi-instanton contributions in the path integral formulation of quantum mechanics.

How to cite

top

Zinn-Justin, Jean. "From multi-instantons to exact results." Annales de l’institut Fourier 53.4 (2003): 1259-1285. <http://eudml.org/doc/116067>.

@article{Zinn2003,
abstract = {In these notes, conjectures about the exact semi-classical expansion of eigenvalues of hamiltonians corresponding to potentials with degenerate minima, are recalled. They were initially motivated by semi-classical calculations of quantum partition functions using a path integral representation and have later been proven to a large extent, using the theory of resurgent functions. They take the form of generalized Bohr--Sommerfeld quantization formulae. We explain here their relation with the corresponding WKB expansion of the Schrödinger equation. We show how these conjectures naturally emerge from an evaluation of multi-instanton contributions in the path integral formulation of quantum mechanics.},
affiliation = {CEA, Service de Physique Théorique de Saclay, CNRS URA 2306, 91191 Gif-sur-Yvette Cedex (France)},
author = {Zinn-Justin, Jean},
journal = {Annales de l’institut Fourier},
keywords = {singular perturbations; turning point theory; WKB methods; resurgence phenomena},
language = {eng},
number = {4},
pages = {1259-1285},
publisher = {Association des Annales de l'Institut Fourier},
title = {From multi-instantons to exact results},
url = {http://eudml.org/doc/116067},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Zinn-Justin, Jean
TI - From multi-instantons to exact results
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1259
EP - 1285
AB - In these notes, conjectures about the exact semi-classical expansion of eigenvalues of hamiltonians corresponding to potentials with degenerate minima, are recalled. They were initially motivated by semi-classical calculations of quantum partition functions using a path integral representation and have later been proven to a large extent, using the theory of resurgent functions. They take the form of generalized Bohr--Sommerfeld quantization formulae. We explain here their relation with the corresponding WKB expansion of the Schrödinger equation. We show how these conjectures naturally emerge from an evaluation of multi-instanton contributions in the path integral formulation of quantum mechanics.
LA - eng
KW - singular perturbations; turning point theory; WKB methods; resurgence phenomena
UR - http://eudml.org/doc/116067
ER -

References

top
  1. J. Zinn-Justin, Multi-instanton contributions in quantum mechanics. II., Nucl. Phys. B 218 (1983), 333-348 MR702804
  2. J. Zinn-Justin, Instantons in quantum mechanics: numerical evidence for conjecture, J. Math. Phys 25 (1984), 549-555 MR737301
  3. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, chap 43 (2002), Oxford Univ. Press, Oxford Zbl1033.81006MR1079938
  4. Analyse algébrique des perturbations singulières, Contribution to the Proceedings of the Franco-Japanese Colloquium Marseille-Luminy, Octobre 1991 47 (1994), Hermann, Paris 
  5. F. Pham, Resurgence, Quantized Canonical Transformations, and Multi-Instanton Expansions, vol. II (1988) Zbl0686.58032MR992490
  6. C. Bender, T.T. Wu, semi-classical calculation of order g, Phys. Rev. D 7 (1973) 
  7. J.C. Le, Guillou, J. Zinn-Justin, Large Order Behaviour of Perturbation Theory, vol. 7 (1990), North-Holland, Amsterdam 
  8. U.D. Jentschura, J. Zinn-Justin, Higher-order corrections to instantons, J. Phys. A 34 (2001) Zbl0998.81022MR1840837
  9. R. Seznec, J. Zinn-Justin, Summation of divergent series by order dependent mappings: Application to the anharmonic oscillator and critical exponents in field theory, J. Math. Phys 20 (1979) Zbl0495.65002MR538715
  10. A.A. Andrianov, The large N expansion as a local perturbation theory, Ann. Phys. (NY) 140 (1982) MR660926
  11. R. Damburg, R. Propin, V. Martyshchenko, Large-order perturbation theory for the O ( 2 ) anharmonic oscillator with negative anharmonicity and for the double-well potential, J. Phys. A 17 (1984) Zbl0541.70025MR772336
  12. V. Buslaev, V. Grecchi, Equivalence of unstable anharmonic oscillators and double wells, J. Phys. A 26 (1993) Zbl0817.47077MR1248734
  13. A. Voros, The return of the quartic oscillator: the complex WKB method., Ann. IHP, A 39 (1983) Zbl0526.34046MR729194
  14. E. Brézin, G. Parisi, J. Zinn-Justin, Large order calculations in gauge theories, Phys. Rev. D 16 (1977) 
  15. J. Zinn-Justin, Expansion around instantons in quatum mechanics, J. Math. Phys. 22 (1981), 511-520 MR611604
  16. E. Delabaere, Spectre de l'opérateur de Schrödinger stationnaire unidimensionnel à potentiel polynôme trigonométrique, C.R. Acad. Sci. Paris 314 (1992) Zbl0766.34060MR1166051
  17. F. Pham, Fonctions résurgentes implicites, C. R. Acad. Sci. Paris 309 (1989) Zbl0734.32001MR1054521
  18. E. Delabaere, H. Dillinger, F. Pham, Développements semi-classiques exacts des niveaux d'énergie d'un oscillateur à une dimension, C. R. Acad. Sci. Paris 310 (1990), 141-146 Zbl0712.35071MR1046892
  19. E. Delabaere, H. Dillinger, (1991) 
  20. R. Damburg, R. Propin, J. Chem. Phys. 55 (1971) 
  21. E.B. Bogomolny, V.A. Fateev, Large order calculations in gauge theories, Phys. Lett. B 71 (1977) MR496011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.