Distribution of nodes on algebraic curves in N

Thomas Bloom[1]; Norman Levenberg[2]

  • [1] University of Toronto, Department of Mathematics, Toronto, Ont. M5S 3G3 (Canada)
  • [2] University of Auckland, Department of Mathematics, 38 Princes Street, Private Bag 92019, Auckland (New-Zealand)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 5, page 1365-1385
  • ISSN: 0373-0956

Abstract

top
Given an irreducible algebraic curves A in N , let m d be the dimension of the complex vector space of all holomorphic polynomials of degree at most d restricted to A . Let K be a nonpolar compact subset of A , and for each d = 1 , 2 , . . . , choose m d points { A d j } j = 1 , . . . , m d in K . Finally, let Λ d be the d -th Lebesgue constant of the array { A d j } ; i.e., Λ d is the operator norm of the Lagrange interpolation operator L d acting on C ( K ) , where L d ( f ) is the Lagrange interpolating polynomial for f of degree d at the points { A d j } j = 1 , . . . , m d . Using techniques of pluripotential theory, we show that there is a probability measure μ K supported on K such that for any array in K satisfying lim sup d Λ d 1 / d 1 , the discrete measures μ d : = 1 m d j = 1 m d δ A d j , d = 1 , 2 , . . . , converge weak- * to μ K .

How to cite

top

Bloom, Thomas, and Levenberg, Norman. "Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$." Annales de l’institut Fourier 53.5 (2003): 1365-1385. <http://eudml.org/doc/116075>.

@article{Bloom2003,
abstract = {Given an irreducible algebraic curves $A$ in $\{\mathbb \{C\}\}^N$, let $m_d$ be the dimension of the complex vector space of all holomorphic polynomials of degree at most $d$ restricted to $A$. Let $K$ be a nonpolar compact subset of $A$, and for each $d=1,2,...,$ choose $m_d$ points $\lbrace A_\{dj\}\rbrace _\{j=1,...,m_d\}$ in $K$. Finally, let $\Lambda _d$ be the $d$-th Lebesgue constant of the array $\lbrace A_\{dj\}\rbrace $; i.e., $\Lambda _d$ is the operator norm of the Lagrange interpolation operator $L_d$ acting on $C(K)$, where $L_d(f)$ is the Lagrange interpolating polynomial for $f$ of degree $d$ at the points $\lbrace A_\{dj\}\rbrace _\{j=1,...,m_d\}$. Using techniques of pluripotential theory, we show that there is a probability measure $\mu _K$ supported on $\partial K$ such that for any array in $K$ satisfying $\{\rm lim\,sup\}_\{d\rightarrow \infty \}\Lambda ^\{1/d\}_d\le 1$, the discrete measures $\mu _d:=\{1\over m_d\}\sum ^\{\{m_d\}\}_\{j=1\}\delta _\{A_\{dj\}\},\; d=1,2,...,$ converge weak-$*$ to $\mu _K$.},
affiliation = {University of Toronto, Department of Mathematics, Toronto, Ont. M5S 3G3 (Canada); University of Auckland, Department of Mathematics, 38 Princes Street, Private Bag 92019, Auckland (New-Zealand)},
author = {Bloom, Thomas, Levenberg, Norman},
journal = {Annales de l’institut Fourier},
keywords = {algebraic curve; Lebesgue constant},
language = {eng},
number = {5},
pages = {1365-1385},
publisher = {Association des Annales de l'Institut Fourier},
title = {Distribution of nodes on algebraic curves in $\{\mathbb \{C\}\}^N$},
url = {http://eudml.org/doc/116075},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Bloom, Thomas
AU - Levenberg, Norman
TI - Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 5
SP - 1365
EP - 1385
AB - Given an irreducible algebraic curves $A$ in ${\mathbb {C}}^N$, let $m_d$ be the dimension of the complex vector space of all holomorphic polynomials of degree at most $d$ restricted to $A$. Let $K$ be a nonpolar compact subset of $A$, and for each $d=1,2,...,$ choose $m_d$ points $\lbrace A_{dj}\rbrace _{j=1,...,m_d}$ in $K$. Finally, let $\Lambda _d$ be the $d$-th Lebesgue constant of the array $\lbrace A_{dj}\rbrace $; i.e., $\Lambda _d$ is the operator norm of the Lagrange interpolation operator $L_d$ acting on $C(K)$, where $L_d(f)$ is the Lagrange interpolating polynomial for $f$ of degree $d$ at the points $\lbrace A_{dj}\rbrace _{j=1,...,m_d}$. Using techniques of pluripotential theory, we show that there is a probability measure $\mu _K$ supported on $\partial K$ such that for any array in $K$ satisfying ${\rm lim\,sup}_{d\rightarrow \infty }\Lambda ^{1/d}_d\le 1$, the discrete measures $\mu _d:={1\over m_d}\sum ^{{m_d}}_{j=1}\delta _{A_{dj}},\; d=1,2,...,$ converge weak-$*$ to $\mu _K$.
LA - eng
KW - algebraic curve; Lebesgue constant
UR - http://eudml.org/doc/116075
ER -

References

top
  1. E. Bedford, The operator ( d d c ) n on complex spaces, Séminaire Pierre Lelong-Henri Skoda 1980-1981 et Colloque de Wimereux, Mai 1981 919 (1982), 294-323, (Springer-Verlag) Zbl0479.32006
  2. T. Bloom, L. Bos, C. Christensen, N. Levenberg, Polynomial interpolation of holomorphic functions in and n , Rocky Mtn. J. Math 22 (1992), 441-470 Zbl0763.32009MR1180711
  3. L. Bos, N. Levenberg, P. Milman, B. A. Taylor, Tangential Markov Inequalities Characterize Algebraic Submanifolds of B b b R n , Indiana J. Math 44 (1995), 115-138 Zbl0824.41015MR1336434
  4. J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Bull. de la Soc. Math. de France 113, Fasc. 2 (1985), 1-125 Zbl0579.32012MR813252
  5. F. Docquier, H. Grauert, Levisches problem und rungescher Satz für teilgebiete Steinscher Mannigfaltigkeiten (German), Math. Ann 140 (1960), 94-123 Zbl0095.28004MR148939
  6. M. Götz, V. Maymeskul, and E. B. Saff, Asymptotic distribution of nodes for near-optimal polynomial interpolation on certain curves in 2 , Constructive Approximation 18 (2002), 255-284 Zbl1004.30004MR1890499
  7. L. Hörmander, Notions of Convexity, (1994), Birkhäuser, Boston Zbl0835.32001MR1301332
  8. M. Klimek, Pluripotential Theory, (1991), Clarendon Press, Oxford Zbl0742.31001MR1150978
  9. S. Krantz, Function Theory of Several Complex Variables, (1982), Wiley, New York Zbl0471.32008MR635928
  10. W. Rudin, A geometric criterion for algebraic varieties, J. Math. Mech 20 (1968), 671-683 Zbl0157.13202MR219750
  11. A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR Izvestiya 20 (1983), 493-502 Zbl0582.32023MR661145
  12. A. Sadullaev, Extension of plurisubharmonic functions from a submanifold, (Russian), Dokl. Akad. Nauk UzSSR 5 (1982), 3-4 Zbl0637.32014MR589642
  13. B. A. Taylor, An estimate for an extremal plurisubharmonic function on n , Séminaire P. Lelong, P. Dolbeault, H. Skoda, Année 1982/1983 1028 (1983), 318-328, (Springer-Verlag) Zbl0522.32014
  14. A. Zeriahi, Fonction de Green pluricomplex à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand 69 (1991), 89-126 Zbl0748.31006MR1143476

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.