Distribution of nodes on algebraic curves in
Thomas Bloom[1]; Norman Levenberg[2]
- [1] University of Toronto, Department of Mathematics, Toronto, Ont. M5S 3G3 (Canada)
- [2] University of Auckland, Department of Mathematics, 38 Princes Street, Private Bag 92019, Auckland (New-Zealand)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 5, page 1365-1385
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBloom, Thomas, and Levenberg, Norman. "Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$." Annales de l’institut Fourier 53.5 (2003): 1365-1385. <http://eudml.org/doc/116075>.
@article{Bloom2003,
abstract = {Given an irreducible algebraic curves $A$ in $\{\mathbb \{C\}\}^N$, let $m_d$ be the dimension of
the complex vector space of all holomorphic polynomials of degree at most $d$ restricted
to $A$. Let $K$ be a nonpolar compact subset of $A$, and for each $d=1,2,...,$ choose
$m_d$ points $\lbrace A_\{dj\}\rbrace _\{j=1,...,m_d\}$ in $K$. Finally, let $\Lambda _d$ be
the $d$-th Lebesgue constant of the array $\lbrace A_\{dj\}\rbrace $; i.e., $\Lambda _d$ is
the operator norm of the Lagrange interpolation operator $L_d$ acting on $C(K)$, where
$L_d(f)$ is the Lagrange interpolating polynomial for $f$ of degree $d$ at the points
$\lbrace A_\{dj\}\rbrace _\{j=1,...,m_d\}$. Using techniques of pluripotential theory, we show
that there is a probability measure $\mu _K$ supported on $\partial K$ such that for any
array in $K$ satisfying $\{\rm lim\,sup\}_\{d\rightarrow \infty \}\Lambda ^\{1/d\}_d\le 1$, the discrete
measures $\mu _d:=\{1\over m_d\}\sum ^\{\{m_d\}\}_\{j=1\}\delta _\{A_\{dj\}\},\; d=1,2,...,$ converge
weak-$*$ to $\mu _K$.},
affiliation = {University of Toronto, Department of Mathematics, Toronto, Ont. M5S 3G3 (Canada); University of Auckland, Department of Mathematics, 38 Princes Street, Private Bag 92019, Auckland (New-Zealand)},
author = {Bloom, Thomas, Levenberg, Norman},
journal = {Annales de l’institut Fourier},
keywords = {algebraic curve; Lebesgue constant},
language = {eng},
number = {5},
pages = {1365-1385},
publisher = {Association des Annales de l'Institut Fourier},
title = {Distribution of nodes on algebraic curves in $\{\mathbb \{C\}\}^N$},
url = {http://eudml.org/doc/116075},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Bloom, Thomas
AU - Levenberg, Norman
TI - Distribution of nodes on algebraic curves in ${\mathbb {C}}^N$
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 5
SP - 1365
EP - 1385
AB - Given an irreducible algebraic curves $A$ in ${\mathbb {C}}^N$, let $m_d$ be the dimension of
the complex vector space of all holomorphic polynomials of degree at most $d$ restricted
to $A$. Let $K$ be a nonpolar compact subset of $A$, and for each $d=1,2,...,$ choose
$m_d$ points $\lbrace A_{dj}\rbrace _{j=1,...,m_d}$ in $K$. Finally, let $\Lambda _d$ be
the $d$-th Lebesgue constant of the array $\lbrace A_{dj}\rbrace $; i.e., $\Lambda _d$ is
the operator norm of the Lagrange interpolation operator $L_d$ acting on $C(K)$, where
$L_d(f)$ is the Lagrange interpolating polynomial for $f$ of degree $d$ at the points
$\lbrace A_{dj}\rbrace _{j=1,...,m_d}$. Using techniques of pluripotential theory, we show
that there is a probability measure $\mu _K$ supported on $\partial K$ such that for any
array in $K$ satisfying ${\rm lim\,sup}_{d\rightarrow \infty }\Lambda ^{1/d}_d\le 1$, the discrete
measures $\mu _d:={1\over m_d}\sum ^{{m_d}}_{j=1}\delta _{A_{dj}},\; d=1,2,...,$ converge
weak-$*$ to $\mu _K$.
LA - eng
KW - algebraic curve; Lebesgue constant
UR - http://eudml.org/doc/116075
ER -
References
top- E. Bedford, The operator on complex spaces, Séminaire Pierre Lelong-Henri Skoda 1980-1981 et Colloque de Wimereux, Mai 1981 919 (1982), 294-323, (Springer-Verlag) Zbl0479.32006
- T. Bloom, L. Bos, C. Christensen, N. Levenberg, Polynomial interpolation of holomorphic functions in and , Rocky Mtn. J. Math 22 (1992), 441-470 Zbl0763.32009MR1180711
- L. Bos, N. Levenberg, P. Milman, B. A. Taylor, Tangential Markov Inequalities Characterize Algebraic Submanifolds of , Indiana J. Math 44 (1995), 115-138 Zbl0824.41015MR1336434
- J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Bull. de la Soc. Math. de France 113, Fasc. 2 (1985), 1-125 Zbl0579.32012MR813252
- F. Docquier, H. Grauert, Levisches problem und rungescher Satz für teilgebiete Steinscher Mannigfaltigkeiten (German), Math. Ann 140 (1960), 94-123 Zbl0095.28004MR148939
- M. Götz, V. Maymeskul, and E. B. Saff, Asymptotic distribution of nodes for near-optimal polynomial interpolation on certain curves in , Constructive Approximation 18 (2002), 255-284 Zbl1004.30004MR1890499
- L. Hörmander, Notions of Convexity, (1994), Birkhäuser, Boston Zbl0835.32001MR1301332
- M. Klimek, Pluripotential Theory, (1991), Clarendon Press, Oxford Zbl0742.31001MR1150978
- S. Krantz, Function Theory of Several Complex Variables, (1982), Wiley, New York Zbl0471.32008MR635928
- W. Rudin, A geometric criterion for algebraic varieties, J. Math. Mech 20 (1968), 671-683 Zbl0157.13202MR219750
- A. Sadullaev, An estimate for polynomials on analytic sets, Math. USSR Izvestiya 20 (1983), 493-502 Zbl0582.32023MR661145
- A. Sadullaev, Extension of plurisubharmonic functions from a submanifold, (Russian), Dokl. Akad. Nauk UzSSR 5 (1982), 3-4 Zbl0637.32014MR589642
- B. A. Taylor, An estimate for an extremal plurisubharmonic function on , Séminaire P. Lelong, P. Dolbeault, H. Skoda, Année 1982/1983 1028 (1983), 318-328, (Springer-Verlag) Zbl0522.32014
- A. Zeriahi, Fonction de Green pluricomplex à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand 69 (1991), 89-126 Zbl0748.31006MR1143476
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.