Endomorphism algebras of motives attached to elliptic modular forms

Alexander F. Brown[1]; Eknath P. Ghate[1]

  • [1] Tata Institute of Fundamental Research, School of Mathematics, Homi Bhabha Road, Mumbai 400 005 (India)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 6, page 1615-1676
  • ISSN: 0373-0956

Abstract

top
We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra X . The Tate conjecture predicts that X is the full endomorphism algebra of the motive. We also investigate the Brauer class of X . For example we show that if the nebentypus is real and p is a prime that does not divide the level, then the local behaviour of X at a place lying above p is essentially determined by the corresponding valuation of the p -th Fourier coefficient of the form.

How to cite

top

Brown, Alexander F., and Ghate, Eknath P.. "Endomorphism algebras of motives attached to elliptic modular forms." Annales de l’institut Fourier 53.6 (2003): 1615-1676. <http://eudml.org/doc/116082>.

@article{Brown2003,
abstract = {We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra $X$. The Tate conjecture predicts that $X$ is the full endomorphism algebra of the motive. We also investigate the Brauer class of $X$. For example we show that if the nebentypus is real and $p$ is a prime that does not divide the level, then the local behaviour of $X$ at a place lying above $p$ is essentially determined by the corresponding valuation of the $p$-th Fourier coefficient of the form.},
affiliation = {Tata Institute of Fundamental Research, School of Mathematics, Homi Bhabha Road, Mumbai 400 005 (India); Tata Institute of Fundamental Research, School of Mathematics, Homi Bhabha Road, Mumbai 400 005 (India)},
author = {Brown, Alexander F., Ghate, Eknath P.},
journal = {Annales de l’institut Fourier},
keywords = {endomorphism algebras; modular motives; Tate conjecture; filtered $(\phi ,N)$-modules; Newton polygons; symbols; filtered ; N)},
language = {eng},
number = {6},
pages = {1615-1676},
publisher = {Association des Annales de l'Institut Fourier},
title = {Endomorphism algebras of motives attached to elliptic modular forms},
url = {http://eudml.org/doc/116082},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Brown, Alexander F.
AU - Ghate, Eknath P.
TI - Endomorphism algebras of motives attached to elliptic modular forms
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 6
SP - 1615
EP - 1676
AB - We study the endomorphism algebra of the motive attached to a non-CM elliptic modular cusp form. We prove that this algebra has a sub-algebra isomorphic to a certain crossed product algebra $X$. The Tate conjecture predicts that $X$ is the full endomorphism algebra of the motive. We also investigate the Brauer class of $X$. For example we show that if the nebentypus is real and $p$ is a prime that does not divide the level, then the local behaviour of $X$ at a place lying above $p$ is essentially determined by the corresponding valuation of the $p$-th Fourier coefficient of the form.
LA - eng
KW - endomorphism algebras; modular motives; Tate conjecture; filtered $(\phi ,N)$-modules; Newton polygons; symbols; filtered ; N)
UR - http://eudml.org/doc/116082
ER -

References

top
  1. A.O.L. Atkin, Wen Ch'ing Winnie Li, Twists of newforms and pseudo-eigenvalues of W-operators, Invent. Math. 48 (1978), 221-243 Zbl0369.10016MR508986
  2. D. Blasius, J. Rogawski., Motives for Hilbert modular forms, Invent. Math. 114 (1993), 55-87 Zbl0829.11028MR1235020
  3. C. Breuil, Lectures on p-adic Hodge theory, deformations and local Langlands, Advanced Course Lecture Notes 20, Centre de Recerca Matemàtica, Barcelona 
  4. P. Deligne, Formes modulaires et représentations -adiques, Séminaire Bourbaki, 1968/1969 179, exp. 355 (1971), 139-172, Springer-Verlag Zbl0206.49901
  5. P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptique, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Vol. 349 (1973), 143-316 Zbl0281.14010
  6. M. Demazure, Lectures on p-divisible groups, 302 (1972), Springer-Verlag Zbl0247.14010MR344261
  7. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpen, Invent. Math. 73 (1983), 349-366 Zbl0588.14026MR718935
  8. J.-M. Fontaine, B. Mazur, Geometric Galois representations, 1 (1995), International Press Zbl0839.14011MR1363495
  9. H. Hida, Modular Forms and Galois Cohomology, (2000), Cambridge University Press, Cambridge Zbl0952.11014MR1779182
  10. U. Jannsen, Motives, numerical equivalence, and semi-simplicity, Invent. Math. 107 (1992), 447-452 Zbl0762.14003MR1150598
  11. F. Momose, On the -adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 28 (1981), 89-109 Zbl0482.10023MR617867
  12. J. Quer, La classe de Brauer de l'algèbre d'endomorphismes d'une variété abélienne modulaire, C. R. Acad. Sci. Paris, Sér. I Math. 327 (1998), 227-230 Zbl0936.14032MR1650241
  13. K. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), 43-62 Zbl0421.14008MR594532
  14. K. Ribet, Endomorphism algebras of abelian varieties attached to newforms of weight 2, Seminar on Number Theory, Paris 1979-1980 12 (1981), 263-276, Birkhäuser, Boston, Mass. Zbl0467.14006
  15. K. Ribet, Abelian varieties over and modular forms, Proc. KAIST Math. Workshop (1992), 53-79 
  16. A. Scholl, Motives for modular forms, Invent. Math. 100 (1990), 419-430 Zbl0760.14002MR1047142
  17. J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Études Sci. 54 (1981), 323-401 Zbl0496.12011MR644559
  18. G. Shimura, On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J. 43 (1971), 199-208 Zbl0225.14015MR296050
  19. G. Shimura, On the factors of the Jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523-544 Zbl0266.14017MR318162
  20. W. Stein, The first newform such that ( a n ) ( a 1 , a 2 , ... ) for all n , (2000) 
  21. M. Volkov, Les représentations -adiques associées aux courbes elliptiques sur p , J. reine angew. Math. 535 (2001), 65-101 Zbl1024.11038MR1837096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.