Curves with only triple ramification

Stefan Schröer[1]

  • [1] Universität Bayreuth, Mathematische Institut, 95440 Bayreuth (Allemagne)

Annales de l'Institut Fourier (2003)

  • Volume: 53, Issue: 7, page 2225-2241
  • ISSN: 0373-0956

Abstract

top
We show that the set of smooth curves of genus g 0 admitting a branched covering X 1 with only triple ramification points is of dimension at least max ( 2 g - 3 , g ) . In characteristic two, such curves have tame rational functions and an analog of Belyi’s Theorem applies to them.

How to cite

top

Schröer, Stefan. "Curves with only triple ramification." Annales de l'Institut Fourier 53.7 (2003): 2225-2241. <http://eudml.org/doc/116097>.

@article{Schröer2003,
abstract = {We show that the set of smooth curves of genus $g\ge 0$ admitting a branched covering $X\rightarrow \{\mathbb \{P\}\}^1$ with only triple ramification points is of dimension at least $\max (2g-3,g)$. In characteristic two, such curves have tame rational functions and an analog of Belyi’s Theorem applies to them.},
affiliation = {Universität Bayreuth, Mathematische Institut, 95440 Bayreuth (Allemagne)},
author = {Schröer, Stefan},
journal = {Annales de l'Institut Fourier},
keywords = {triple ramification; tame coverings; Belyi's Theorem; smooth curves; ramification points; families; moduli space of curves},
language = {eng},
number = {7},
pages = {2225-2241},
publisher = {Association des Annales de l'Institut Fourier},
title = {Curves with only triple ramification},
url = {http://eudml.org/doc/116097},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Schröer, Stefan
TI - Curves with only triple ramification
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 2225
EP - 2241
AB - We show that the set of smooth curves of genus $g\ge 0$ admitting a branched covering $X\rightarrow {\mathbb {P}}^1$ with only triple ramification points is of dimension at least $\max (2g-3,g)$. In characteristic two, such curves have tame rational functions and an analog of Belyi’s Theorem applies to them.
LA - eng
KW - triple ramification; tame coverings; Belyi's Theorem; smooth curves; ramification points; families; moduli space of curves
UR - http://eudml.org/doc/116097
ER -

References

top
  1. G. Belyi, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), 267-276 Zbl0409.12012MR534593
  2. H. Esnault, B. Kahn, E. Viehweg, Coverings with odd ramification and Stiefel-Whitney classes, J. Reine Angew. Math. 441 (1993), 145-188 Zbl0772.57028MR1228615
  3. M. Fried, E. Klassen, Y. Kopeliovich, Realizing alternating groups as monodromy groups of genus one covers, Proc. Amer. Math. Soc. 129 (2001), 111-119 Zbl0978.30026MR1784019
  4. W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. Math 90 (1969), 542-575 Zbl0194.21901MR260752
  5. A. Grothendieck, Éléments de géométrie algébrique III: Étude cohomologique des faiscaux cohérent, Publ. Math. Inst. Hautes Étud. Sci. 11 (1961) Zbl0118.36206
  6. A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math., Inst. Hautes Étud. Sci 24 (1965) Zbl0135.39701
  7. A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math., Inst. Hautes Étud. Sci 28 (1966) Zbl0144.19904
  8. A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math., Inst. Hautes Étud. Sci 32 (1967) Zbl0153.22301
  9. A. Grothendieck, al., Schémas en groupes I, 151 (1970), Springer, Berlin Zbl0207.51401MR274458
  10. J. Harris, I. Morrison, Moduli of curves, 187 (1998), Springer, New York Zbl0913.14005MR1631825
  11. L. Illusie, Complexe cotangent et déformations I, 239 (1971), Springer, Berlin Zbl0224.13014MR491680
  12. H. Laufer, Taut two-dimensional singularities, Math. Ann 205 (1973), 131-164 Zbl0281.32010MR333238
  13. F. Orgogozo, I. Vidal, Le théorème de spécialisation du groupe fondamental, Courbes semi-stables et groupe fondamental en géométrie algébrique 187 (2000), 169-184, Birkhäuser, Basel Zbl0978.14033
  14. M. Saïdi, Revêtements modérés et groupe fondamental de graphe de groupes, Compositio Math. 107 (1997), 319-338 Zbl0929.14016MR1458754
  15. S. Schröer, The strong Franchetta Conjecture in arbitrary characteristics Zbl1059.14058MR1984659
  16. J.-P. Serre, Groupes algébriques et corps de classes, 1264 (1975), Hermann, Paris Zbl0318.14004MR466151
  17. M. Tomari, A p g -formula and elliptic singularities, Publ. Res. Inst. Math. Sci 21 (1985), 297-354 Zbl0589.14013MR785140
  18. P. Wagreich, Elliptic singularities of surfaces., Amer. J. Math 92 (1970), 419-454 Zbl0204.54501MR291170

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.