Curves with only triple ramification
- [1] Universität Bayreuth, Mathematische Institut, 95440 Bayreuth (Allemagne)
Annales de l'Institut Fourier (2003)
- Volume: 53, Issue: 7, page 2225-2241
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSchröer, Stefan. "Curves with only triple ramification." Annales de l'Institut Fourier 53.7 (2003): 2225-2241. <http://eudml.org/doc/116097>.
@article{Schröer2003,
abstract = {We show that the set of smooth curves of genus $g\ge 0$ admitting a branched covering
$X\rightarrow \{\mathbb \{P\}\}^1$ with only triple ramification points is of dimension at least
$\max (2g-3,g)$. In characteristic two, such curves have tame rational functions and an
analog of Belyi’s Theorem applies to them.},
affiliation = {Universität Bayreuth, Mathematische Institut, 95440 Bayreuth (Allemagne)},
author = {Schröer, Stefan},
journal = {Annales de l'Institut Fourier},
keywords = {triple ramification; tame coverings; Belyi's Theorem; smooth curves; ramification points; families; moduli space of curves},
language = {eng},
number = {7},
pages = {2225-2241},
publisher = {Association des Annales de l'Institut Fourier},
title = {Curves with only triple ramification},
url = {http://eudml.org/doc/116097},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Schröer, Stefan
TI - Curves with only triple ramification
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 2225
EP - 2241
AB - We show that the set of smooth curves of genus $g\ge 0$ admitting a branched covering
$X\rightarrow {\mathbb {P}}^1$ with only triple ramification points is of dimension at least
$\max (2g-3,g)$. In characteristic two, such curves have tame rational functions and an
analog of Belyi’s Theorem applies to them.
LA - eng
KW - triple ramification; tame coverings; Belyi's Theorem; smooth curves; ramification points; families; moduli space of curves
UR - http://eudml.org/doc/116097
ER -
References
top- G. Belyi, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), 267-276 Zbl0409.12012MR534593
- H. Esnault, B. Kahn, E. Viehweg, Coverings with odd ramification and Stiefel-Whitney classes, J. Reine Angew. Math. 441 (1993), 145-188 Zbl0772.57028MR1228615
- M. Fried, E. Klassen, Y. Kopeliovich, Realizing alternating groups as monodromy groups of genus one covers, Proc. Amer. Math. Soc. 129 (2001), 111-119 Zbl0978.30026MR1784019
- W. Fulton, Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. Math 90 (1969), 542-575 Zbl0194.21901MR260752
- A. Grothendieck, Éléments de géométrie algébrique III: Étude cohomologique des faiscaux cohérent, Publ. Math. Inst. Hautes Étud. Sci. 11 (1961) Zbl0118.36206
- A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math., Inst. Hautes Étud. Sci 24 (1965) Zbl0135.39701
- A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math., Inst. Hautes Étud. Sci 28 (1966) Zbl0144.19904
- A. Grothendieck, Éléments de géométrie algébrique IV: Étude locale des schémas et des morphismes de schémas, Publ. Math., Inst. Hautes Étud. Sci 32 (1967) Zbl0153.22301
- A. Grothendieck, al., Schémas en groupes I, 151 (1970), Springer, Berlin Zbl0207.51401MR274458
- J. Harris, I. Morrison, Moduli of curves, 187 (1998), Springer, New York Zbl0913.14005MR1631825
- L. Illusie, Complexe cotangent et déformations I, 239 (1971), Springer, Berlin Zbl0224.13014MR491680
- H. Laufer, Taut two-dimensional singularities, Math. Ann 205 (1973), 131-164 Zbl0281.32010MR333238
- F. Orgogozo, I. Vidal, Le théorème de spécialisation du groupe fondamental, Courbes semi-stables et groupe fondamental en géométrie algébrique 187 (2000), 169-184, Birkhäuser, Basel Zbl0978.14033
- M. Saïdi, Revêtements modérés et groupe fondamental de graphe de groupes, Compositio Math. 107 (1997), 319-338 Zbl0929.14016MR1458754
- S. Schröer, The strong Franchetta Conjecture in arbitrary characteristics Zbl1059.14058MR1984659
- J.-P. Serre, Groupes algébriques et corps de classes, 1264 (1975), Hermann, Paris Zbl0318.14004MR466151
- M. Tomari, A -formula and elliptic singularities, Publ. Res. Inst. Math. Sci 21 (1985), 297-354 Zbl0589.14013MR785140
- P. Wagreich, Elliptic singularities of surfaces., Amer. J. Math 92 (1970), 419-454 Zbl0204.54501MR291170
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.