Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal
Carolyn S. Gordon[1]; Juan Pablo Rossetti[2]
- [1] Dartmouth College, Hanover, N.H. 03755 (USA)
- [2] Universidad Nacional de Córdoba, FAMAF, Ciudad Universitaria, 5000 Córdoba (Argentine)
Annales de l'Institut Fourier (2003)
- Volume: 53, Issue: 7, page 2297-2314
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGordon, Carolyn S., and Rossetti, Juan Pablo. "Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal." Annales de l'Institut Fourier 53.7 (2003): 2297-2314. <http://eudml.org/doc/116100>.
@article{Gordon2003,
abstract = {Let $M$ be a $2m$-dimensional compact Riemannian manifold. We show that the spectrum of
the Hodge Laplacian acting on $m$-forms does not determine whether the manifold has
boundary, nor does it determine the lengths of the closed geodesics. Among the many
examples are a projective space and a hemisphere that have the same Hodge spectrum on 1-
forms, and hyperbolic surfaces, mutually isospectral on 1-forms, with different
injectivity radii. The Hodge $m$-spectrum also does not distinguish orbifolds from
manifolds.},
affiliation = {Dartmouth College, Hanover, N.H. 03755 (USA); Universidad Nacional de Córdoba, FAMAF, Ciudad Universitaria, 5000 Córdoba (Argentine)},
author = {Gordon, Carolyn S., Rossetti, Juan Pablo},
journal = {Annales de l'Institut Fourier},
keywords = {spectral geometry; Hodge Laplacian; isospectral manifolds; heat invariants; absolute boundary conditions; middle degree spectrum},
language = {eng},
number = {7},
pages = {2297-2314},
publisher = {Association des Annales de l'Institut Fourier},
title = {Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal},
url = {http://eudml.org/doc/116100},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Gordon, Carolyn S.
AU - Rossetti, Juan Pablo
TI - Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 2297
EP - 2314
AB - Let $M$ be a $2m$-dimensional compact Riemannian manifold. We show that the spectrum of
the Hodge Laplacian acting on $m$-forms does not determine whether the manifold has
boundary, nor does it determine the lengths of the closed geodesics. Among the many
examples are a projective space and a hemisphere that have the same Hodge spectrum on 1-
forms, and hyperbolic surfaces, mutually isospectral on 1-forms, with different
injectivity radii. The Hodge $m$-spectrum also does not distinguish orbifolds from
manifolds.
LA - eng
KW - spectral geometry; Hodge Laplacian; isospectral manifolds; heat invariants; absolute boundary conditions; middle degree spectrum
UR - http://eudml.org/doc/116100
ER -
References
top- N. Blažić, N. Bokan, P. Gilkey, The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary, Global differential geometry and global analysis (Berlin, 1990) No 1481 (1991), 5-17, Springer, Berlin Zbl0755.58047
- N. Blažić, N. Bokan, P. Gilkey, Spectral geometry of the form valued Laplacian for manifolds with boundary, Indian J. Pure Appl. Math. 23 (1992), 103-120 Zbl0758.58034MR1156162
- P. Buser, Geometry and spectra of compact Riemann surfaces, (1992), Birkhäuser, Boston Zbl0770.53001MR1183224
- Y. Colin de Verdière, Spectre du Laplacien et longeurs des géodésiques périodiques II, Comp. Math. 27 (1973), 159-184 Zbl0265.53042MR319107
- H. Donnelly, Spectrum and the fixed point sets of isometries I, Math. Ann. 224 (1976), 161-170 Zbl0319.53031MR420743
- H. Donnelly, Asymptotic expansions for the compact quotients of properly discontinuous group actions, Illinois J. Math. 23 (1979), 485-496 Zbl0411.53033MR537804
- P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, (1984), Publish or Perish Inc., Wilmington, DE Zbl0565.58035MR783634
- C.S. Gordon, Riemannian manifolds isospectral on functions but not on 1-forms, J. Diff. Geom. 24 (1986), 79-96 Zbl0585.53036MR857377
- C.S. Gordon, Isospectral closed Riemannian manifolds which are not locally isometric II, Contemporary Mathematics: Geometry of the Spectrum vol. 173 (1994), 121-131, Amer. Math. Soc. Zbl0811.58063
- C.S. Gordon, Survey of isospectral manifolds, Handbook of Differential Geometry I (2000), 747-778, Elsevier Science B.V. Zbl0959.58039
- C.S. Gordon, Isospectral deformations of metrics on spheres, Invent. Math. 145 (2001), 317-331 Zbl0995.58004MR1872549
- C.S. Gordon, R. Gornet, D. Schueth, D.L. Webb, E.N. Wilson, Isospectral deformations of closed Riemannian manifolds with different scalar curvature, Ann. Inst. Fourier 48 (1998), 593-607 Zbl0922.58083MR1625586
- C.S. Gordon, Z.I. Szabo, Isospectral deformations of negatively curved Riemannian manifolds with boundary which are not locally isometric, Duke Math. J. 113 (2002), 355-383 Zbl1042.58020MR1909222
- C.S. Gordon, E.N. Wilson, Continuous families of isospectral Riemannian metrics which are not locally isometric, J. Diff. Geom. 47 (1997), 504-529 Zbl0915.58104MR1617640
- R. Gornet, A new construction of isospectral Riemannian nilmanifolds with examples, Mich. Math. J. 43 (1996), 159-188 Zbl0851.53024MR1381605
- R. Gornet, Continuous families of Riemannian manifolds, isospectral on functions but not on -forms, J. Geom. Anal. 10 (2000), 281-298 Zbl1009.58023MR1766484
- A. Ikeda, Riemannian manifolds -isospectral but not -isospectral, Persp. in Math. 8 (1988), 159-184 Zbl0704.53037
- R. Miatello, J.P. Rossetti, Flat manifolds isospectral on -forms, J. Geom. Anal. 11 (2001), 647-665 Zbl1040.58014MR1861302
- R. Miatello, J.P. Rossetti, Comparison of twisted -form spectra for flat manifolds with diagonal holonomy, Ann. Global Anal. Geom. 21 (2002), 341-376 Zbl1001.58023MR1910457
- R. Miatello, J.P. Rossetti, Length spectra and -spectra of compact flat manifolds, J. Geom. Anal. 13 (2003), 631-657 Zbl1060.58021MR2005157
- H. Pesce, Représentations relativement équivalentes et variétés riemanniennes isospectrales, C. R. Acad. Sci. Paris, Série I 3118 (1994), 657-659 Zbl0846.58053MR1272321
- H. Pesce, Quelques applications de la théorie des représentations en géométrie spectrale, Rend. Mat. Appl., Serie VII 18 (1998), 1-63 Zbl0923.58056MR1638226
- D. Schueth, Continuous families of isospectral metrics on simply connected manifolds, Ann. Math. 149 (1999), 169-186 Zbl0964.53027MR1680563
- D. Schueth, Isospectral manifolds with different local geometries, J. reine angew. Math. 534 (2001), 41-94 Zbl0986.58016MR1831631
- D. Schueth, Isospectral metrics on five-dimensional spheres, J. Diff. Geom. 58 (2001), 87-111 Zbl1038.58042MR1895349
- P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
- T. Sunada, Riemannian coverings and isospectral manifolds, Annals of Math. 121 (1985), 169-186 Zbl0585.58047MR782558
- C. Sutton, Isospectral simply-connected homogeneous spaces and the spectral rigidity of group actions, Comment. Math. Helv. 77 (2002), 701-717 Zbl1018.58025MR1949110
- Z.I. Szabo, Locally non-isometric yet super isospectral spaces, Geom. Funct. Anal. 9 (1999), 185-214 Zbl0964.53026MR1675894
- Z.I. Szabo, Isospectral pairs of metrics on balls, spheres, and other manifolds with different local geometries, Ann. of Math. 154 (2001), 437-475 Zbl1012.53034MR1865977
- W. Thurston, The geometry and topology of 3-manifolds, (1978), Princeton University Math. Dept.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.