Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal

Carolyn S. Gordon[1]; Juan Pablo Rossetti[2]

  • [1] Dartmouth College, Hanover, N.H. 03755 (USA)
  • [2] Universidad Nacional de Córdoba, FAMAF, Ciudad Universitaria, 5000 Córdoba (Argentine)

Annales de l'Institut Fourier (2003)

  • Volume: 53, Issue: 7, page 2297-2314
  • ISSN: 0373-0956

Abstract

top
Let M be a 2 m -dimensional compact Riemannian manifold. We show that the spectrum of the Hodge Laplacian acting on m -forms does not determine whether the manifold has boundary, nor does it determine the lengths of the closed geodesics. Among the many examples are a projective space and a hemisphere that have the same Hodge spectrum on 1- forms, and hyperbolic surfaces, mutually isospectral on 1-forms, with different injectivity radii. The Hodge m -spectrum also does not distinguish orbifolds from manifolds.

How to cite

top

Gordon, Carolyn S., and Rossetti, Juan Pablo. "Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal." Annales de l'Institut Fourier 53.7 (2003): 2297-2314. <http://eudml.org/doc/116100>.

@article{Gordon2003,
abstract = {Let $M$ be a $2m$-dimensional compact Riemannian manifold. We show that the spectrum of the Hodge Laplacian acting on $m$-forms does not determine whether the manifold has boundary, nor does it determine the lengths of the closed geodesics. Among the many examples are a projective space and a hemisphere that have the same Hodge spectrum on 1- forms, and hyperbolic surfaces, mutually isospectral on 1-forms, with different injectivity radii. The Hodge $m$-spectrum also does not distinguish orbifolds from manifolds.},
affiliation = {Dartmouth College, Hanover, N.H. 03755 (USA); Universidad Nacional de Córdoba, FAMAF, Ciudad Universitaria, 5000 Córdoba (Argentine)},
author = {Gordon, Carolyn S., Rossetti, Juan Pablo},
journal = {Annales de l'Institut Fourier},
keywords = {spectral geometry; Hodge Laplacian; isospectral manifolds; heat invariants; absolute boundary conditions; middle degree spectrum},
language = {eng},
number = {7},
pages = {2297-2314},
publisher = {Association des Annales de l'Institut Fourier},
title = {Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal},
url = {http://eudml.org/doc/116100},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Gordon, Carolyn S.
AU - Rossetti, Juan Pablo
TI - Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn't reveal
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 2297
EP - 2314
AB - Let $M$ be a $2m$-dimensional compact Riemannian manifold. We show that the spectrum of the Hodge Laplacian acting on $m$-forms does not determine whether the manifold has boundary, nor does it determine the lengths of the closed geodesics. Among the many examples are a projective space and a hemisphere that have the same Hodge spectrum on 1- forms, and hyperbolic surfaces, mutually isospectral on 1-forms, with different injectivity radii. The Hodge $m$-spectrum also does not distinguish orbifolds from manifolds.
LA - eng
KW - spectral geometry; Hodge Laplacian; isospectral manifolds; heat invariants; absolute boundary conditions; middle degree spectrum
UR - http://eudml.org/doc/116100
ER -

References

top
  1. N. Blažić, N. Bokan, P. Gilkey, The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary, Global differential geometry and global analysis (Berlin, 1990) No 1481 (1991), 5-17, Springer, Berlin Zbl0755.58047
  2. N. Blažić, N. Bokan, P. Gilkey, Spectral geometry of the form valued Laplacian for manifolds with boundary, Indian J. Pure Appl. Math. 23 (1992), 103-120 Zbl0758.58034MR1156162
  3. P. Buser, Geometry and spectra of compact Riemann surfaces, (1992), Birkhäuser, Boston Zbl0770.53001MR1183224
  4. Y. Colin de Verdière, Spectre du Laplacien et longeurs des géodésiques périodiques II, Comp. Math. 27 (1973), 159-184 Zbl0265.53042MR319107
  5. H. Donnelly, Spectrum and the fixed point sets of isometries I, Math. Ann. 224 (1976), 161-170 Zbl0319.53031MR420743
  6. H. Donnelly, Asymptotic expansions for the compact quotients of properly discontinuous group actions, Illinois J. Math. 23 (1979), 485-496 Zbl0411.53033MR537804
  7. P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, (1984), Publish or Perish Inc., Wilmington, DE Zbl0565.58035MR783634
  8. C.S. Gordon, Riemannian manifolds isospectral on functions but not on 1-forms, J. Diff. Geom. 24 (1986), 79-96 Zbl0585.53036MR857377
  9. C.S. Gordon, Isospectral closed Riemannian manifolds which are not locally isometric II, Contemporary Mathematics: Geometry of the Spectrum vol. 173 (1994), 121-131, Amer. Math. Soc. Zbl0811.58063
  10. C.S. Gordon, Survey of isospectral manifolds, Handbook of Differential Geometry I (2000), 747-778, Elsevier Science B.V. Zbl0959.58039
  11. C.S. Gordon, Isospectral deformations of metrics on spheres, Invent. Math. 145 (2001), 317-331 Zbl0995.58004MR1872549
  12. C.S. Gordon, R. Gornet, D. Schueth, D.L. Webb, E.N. Wilson, Isospectral deformations of closed Riemannian manifolds with different scalar curvature, Ann. Inst. Fourier 48 (1998), 593-607 Zbl0922.58083MR1625586
  13. C.S. Gordon, Z.I. Szabo, Isospectral deformations of negatively curved Riemannian manifolds with boundary which are not locally isometric, Duke Math. J. 113 (2002), 355-383 Zbl1042.58020MR1909222
  14. C.S. Gordon, E.N. Wilson, Continuous families of isospectral Riemannian metrics which are not locally isometric, J. Diff. Geom. 47 (1997), 504-529 Zbl0915.58104MR1617640
  15. R. Gornet, A new construction of isospectral Riemannian nilmanifolds with examples, Mich. Math. J. 43 (1996), 159-188 Zbl0851.53024MR1381605
  16. R. Gornet, Continuous families of Riemannian manifolds, isospectral on functions but not on 1 -forms, J. Geom. Anal. 10 (2000), 281-298 Zbl1009.58023MR1766484
  17. A. Ikeda, Riemannian manifolds p -isospectral but not ( p + 1 ) -isospectral, Persp. in Math. 8 (1988), 159-184 Zbl0704.53037
  18. R. Miatello, J.P. Rossetti, Flat manifolds isospectral on p -forms, J. Geom. Anal. 11 (2001), 647-665 Zbl1040.58014MR1861302
  19. R. Miatello, J.P. Rossetti, Comparison of twisted P -form spectra for flat manifolds with diagonal holonomy, Ann. Global Anal. Geom. 21 (2002), 341-376 Zbl1001.58023MR1910457
  20. R. Miatello, J.P. Rossetti, Length spectra and p -spectra of compact flat manifolds, J. Geom. Anal. 13 (2003), 631-657 Zbl1060.58021MR2005157
  21. H. Pesce, Représentations relativement équivalentes et variétés riemanniennes isospectrales, C. R. Acad. Sci. Paris, Série I 3118 (1994), 657-659 Zbl0846.58053MR1272321
  22. H. Pesce, Quelques applications de la théorie des représentations en géométrie spectrale, Rend. Mat. Appl., Serie VII 18 (1998), 1-63 Zbl0923.58056MR1638226
  23. D. Schueth, Continuous families of isospectral metrics on simply connected manifolds, Ann. Math. 149 (1999), 169-186 Zbl0964.53027MR1680563
  24. D. Schueth, Isospectral manifolds with different local geometries, J. reine angew. Math. 534 (2001), 41-94 Zbl0986.58016MR1831631
  25. D. Schueth, Isospectral metrics on five-dimensional spheres, J. Diff. Geom. 58 (2001), 87-111 Zbl1038.58042MR1895349
  26. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
  27. T. Sunada, Riemannian coverings and isospectral manifolds, Annals of Math. 121 (1985), 169-186 Zbl0585.58047MR782558
  28. C. Sutton, Isospectral simply-connected homogeneous spaces and the spectral rigidity of group actions, Comment. Math. Helv. 77 (2002), 701-717 Zbl1018.58025MR1949110
  29. Z.I. Szabo, Locally non-isometric yet super isospectral spaces, Geom. Funct. Anal. 9 (1999), 185-214 Zbl0964.53026MR1675894
  30. Z.I. Szabo, Isospectral pairs of metrics on balls, spheres, and other manifolds with different local geometries, Ann. of Math. 154 (2001), 437-475 Zbl1012.53034MR1865977
  31. W. Thurston, The geometry and topology of 3-manifolds, (1978), Princeton University Math. Dept. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.